User Tools

Site Tools


bacteria:t3e:xopo

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopo [2020/07/03 15:26]
rkoebnik
— (current)
Line 1: Line 1:
-====== XopO ====== 
- 
-Author: Harrold van den Burg\\ 
-Internal reviewer: [[https://www.researchgate.net/profile/Jakub_Pecenka|Jakub Pečenka]]\\ 
-Expert reviewer: FIXME 
- 
-Class: XopO\\ 
-Family: XopO\\ 
-Prototype: XopO (//Xanthomonas euvesicatoria// pv. //euvesicatoria// aka //Xanthomonas campestris// pv. //vescicatoria//; strain 85-10)\\ 
-RefSeq ID: [[https://www.ncbi.nlm.nih.gov/ipg/3884105|AAV74207.1]] (220 aa)\\ 
-3D structure: Unknown 
- 
-===== Biological function ===== 
- 
-=== How discovered? === 
- 
-XopO was discovered by a random transponson insertion (Tn//5//) screen using a AvrBs2<sub>62-547</sub> reporter (readout: hypersensitive response), a construct that lacks the endogenous type-III secretion and translocation signal (Roden //et al//., 2004). 
-=== (Experimental) evidence for being a T3E === 
- 
-XopO fused to the Cya reporter was used to show that it is translocated into plant cells in a //hrpF//-dependent manner (Roden //et al//., 2004). 
-=== Regulation === 
- 
-XopO was found to be regulated by HrpG using HrpG* (Roden //et al//., 2004). //XopO// contains a PIP box sequence 31bp upstream of the -10 promoter motif (Koebnik //et al//., 2006). 
-=== Phenotypes === 
- 
-  * Roden et al. did not find significant growth defects of a //Xcv//  Δ//xopO//  mutant in susceptible pepper and tomato leaves (Roden et al., 2004). 
-  * XopO from //Xcv//  85-10 inhibits cell death in //N. benthamiana//  (Teper //et al//., 2015). 
-  * XopO suppresses //X. euvesicatoria-//induced chlorosis in leaves of susceptible tomato (Teper //et al//., 2015). 
-  * XopO failed to inhibit expression of the reporter gene //FRK1//  in response to application of a PAMP, i.e. flg22 peptide (Popov //et al//., 2016). 
-  * Based on whole genome sequences of //X. euvesicatoria//  strains, it was concluded that the //xopO//  gene has suffered from mutational inactivation by at least four different events, suggesting that selection pressure favors loss of //xopO//  function in this pathogen (Barak //et al//., 2016). 
- 
-=== Localization === 
- 
-Unknown. 
- 
-=== Enzymatic function === 
- 
-Unknown. 
- 
-=== Interaction partners === 
- 
-XopO was shown to interact with tomato 14-3-3- proteins (TFT) (Dubrow //et al//., 2018). 
- 
-===== Conservation ===== 
- 
-=== In xanthomonads === 
- 
-Yes, in some xanthomonads (//e.g.//, //X. euvesicatoria//, //X. oryzae//) (Lang //et al//., 2019). The //xopO//  gene is a differential T3E gene between //Xoo//  and //Xoc//  (Hajri //et al//., 2012). 
- 
-=== In other plant pathogens/symbionts === 
- 
-Yes, //e.g.//  //Pseudomonas syringae//  (Li //et al//., 2014). 
- 
-===== References ===== 
- 
-Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016) Whole-genome sequences of //Xanthomonas euvesicatoria//  strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Front Plant Sci. 7: 1805. DOI: [[https://doi.org/10.3389/fpls.2016.01805|10.3389/fpls.2016.01805]] 
- 
-Dubrow Z, Sunitha S, Kim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YC, Ozbaki-Yagan N, Vance H, Sessa G, Mudgett MB (2018). Tomato 14-3-3 proteins are required for //Xv3//  disease resistance and interact with a subset of //Xanthomonas euvesicatoria//  effectors. Mol. Plant Microbe Interact. 31: 1301-1311. DOI: [[https://doi.org/10.1094/MPMI-02-18-0048-R|10.1094/MPMI-02-18-0048-R]] 
- 
-Hajri A, Brin C, Zhao S, David P, Feng JX, Koebnik R, Szurek B, Verdier V, Boureau T, Poussier S (2012). Multilocus sequence analysis and type III effector repertoire mining provide new insights into the evolutionary history and virulence of //Xanthomonas oryzae//. Mol. Plant Pathol. 13: 288-302. DOI: [[https://doi.org/10.1111/j.1364-3703.2011.00745.x|10.1111/j.1364-3703.2011.00745.x]] 
- 
-Koebnik R, Kruger A, Thieme F, Urban A, Bonas U (2006). Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J. Bacteriol. 188: 7652-7660. DOI: [[https://doi.org/10.1128/JB.00795-06|10.1128/JB.00795-06]] 
- 
-Lang JM, Pérez-Quintero AL, Koebnik R, DuCharme E, Sarra S, Doucoure H, Keita I, Ziegle J, Jacobs JM, Oliva R, Koita O, Szurek B, Verdier V, Leach JE (2019). A pathovar of //Xanthomonas oryzae //infecting wild grasses provides insight into the evolution of pathogenicity in rice agroecosystems. Front. Plant Sci. 10: 1–15. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.3389/fpls.2019.00507]] 
- 
-Li G, Froehlich JE, Elowsky C, Msanne J, Ostosh AC, Zhang C, Awada T, Alfano JR, (2014). Distinct //Pseudomonas //type-III effectors use a cleavable transit peptide to target chloroplasts. Plant J. 77: 310–321. DOI: [[https://doi.org/10.1111/tpj.12396|10.1111/tpj.12396]] 
- 
-Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria//  type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]] 
- 
-Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas//  infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]] 
- 
-Teper D, Sunitha S, Martin GB, Sessa G (2015). Five //Xanthomonas//  type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. Plant Signal. Behav. 10: e1064573. DOI: [[https://doi.org/10.1080/15592324.2015.1064573|10.1080/15592324.2015.1064573]] 
  
bacteria/t3e/xopo.1593782817.txt.gz · Last modified: 2020/07/03 15:26 by rkoebnik