====== XopAW ====== Author: Yael Helman\\ Internal reviewer: [[https://www.researchgate.net/profile/Monika_Kaluzna|Monika Kałużna]]\\ Expert reviewer: [[https://www.researchgate.net/profile/Ralf-Koebnik|Ralf Koebnik]] Class: XopAW\\ Family: XopAW\\ Prototype: XCV3093 (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\ RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/CAJ24824.1|CAJ24824.1]] (221 aa)\\ 3D structure: Unknown ===== Biological function ===== === How discovered? === XopAW (XCV3093 in //X. euvesicatoria// pv. //euvesicatoria// 85-10; was discovered using a machine-learning approach; Teper //et al//., 2016). === (Experimental) evidence for being a T3E === XopAWXcv fused to the AvrBs2 reporter without type 3 secretion signal was shown to trigger a hypersensitive response in ECW20R pepper leaves (carrying the //B////s2// resistance gene) in an //hrpF//-dependent manner (Teper //et al//., 2016). === Regulation === Unknown. === Phenotypes === A //Xanthomonas euvesicatoria// 85-10 mutant defective in //xopAW// did not exhibit reduced virulence symptoms when inoculated on leaves of susceptible pepper plants, relative to wild-type 85-10 (Teper //et al//., 2016). Additionally, expression in //Arabidopsis// mesophyll protoplasts did not display any significant effect on suppression of the PTI-associated responses induced by the bacterial peptide flg22 (Popov //et al//., 2018). === Localization === Unknown. === Enzymatic function === XopAW contains a canonical EF-hand calcium-binding motif and can potentially interfere with host calcium signaling (Teper //et al//., 2016). === Interaction partners === Unknown. ===== Conservation ===== === In xanthomonads === Yes (e.g., //X. arboricola, X. axonopodis, X. citri, X//. //euvesicatoria//, //X. phaseoli//, all above 90% sequence identity; more distant homologs in //X. translucens//, //X. hyacinthi//, //X. bonasiae//, //X. sacchari//). Presence in strains without T3SS (//X. bonasiae//, //X. sacchari//) is atypical for type 3 effectors. === In other plant pathogens/symbionts === Yes (e.g.//, Ralstonia solanacearum, Acidovorax avenae, Pseudomonas syringae, Rhizobium//) (Teper //et al.//, 2016). ===== References ===== Popov G, Fraiture M, Brunner F, Sessa G (2018). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]] Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel //Xanthomonas euvesicatoria// type III effector proteins by a machine-learning approach. Mol. Plant Pathol. 17: 398-411. DOI: [[https://doi.org/10.1111/mpp.12288|10.1111/mpp.12288]] ===== References ===== Popov G, Fraiture M, Brunner F, Sessa G (2018). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]] Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel //Xanthomonas euvesicatoria// type III effector proteins by a machine-learning approach. Mol. Plant Pathol. 17: 398-411. DOI: [[https://doi.org/10.1111/mpp.12288|10.1111/mpp.12288]]