====== XopE3 ====== Author: [[https://www.researchgate.net/profile/Jaime_Cubero|Jaime Cubero]]\\ Internal reviewer: [[https://www.researchgate.net/profile/Eran_Bosis|Eran Bosis]]\\ Expert reviewer: [[http://www.iq.usp.br/setubal|João C. Setubal]] Class: XopE\\ Family: XopE3\\ Prototype: XAC3224 (//Xanthomonas citri// pv. //citri//)\\ RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011052114.1|WP_011052114.1]] (356 aa)\\ Synonym: AvrXacE2 (//Xanthomonas citri //pv. //citri//)\\ 3D structure: Contains a catalytic triad of cysteine, histidine and aspartic acid, and have been grouped with peptide N-glycanases (PNGases, members of the transglutaminase protein superfamily). XopE3 contains N-myristoylation motifs (Dunger //et al//., 2012). ===== Biological function ===== === How discovered? === The gene coding for XopE3 (avrXacE2) was first identified in the genome annotation of //Xanthomonas citri //subsp. //citri //A306 (da Silva //et al//., 2002). === (Experimental) evidence for being a T3E === There is no experimental evidence. It is inferred to be a T3E based on similarity to other XopE effectors. === Regulation === avrXacE2 was shown to be regulated by HrpG regulon in X. citri (Guo //et al//., 2011). This effector does not contain PIP box-like sequences. === Phenotypes === Lesions caused by mutants of X. citri on avrXacE2 show more extensive necrotic areas relative to those caused by wild-type bacteria in citrus leaves and grow slowly compared to wild type strain. This protein may function to attenuate cell death. No effect has been revealed on hypersensitive response (HR) on non-host plants (Dunger //et al//., 2012). === Localization === Confocal microscopy imaging of //N. benthamiana// cells expressing avrXacE2-GFP fusion shows a localization mainly in the plant cell membrane and in the nucleus (Dunger //et al//., 2012). === Enzymatic function === XopE3 belongs to the HopX effector family, which is part of the transglutaminase superfamily (Nimchuk //et al//., 2007). === Interaction partners === In //X. citri //subsp. //citri //A306 the gene coding for XopE3 is in a region hypothesized to be a genomic island (Moreira //et al.//, 2010). This region or parts of it are conserved in many Xanthomonas strains, as shown by a genomic neighborhood search in the Integrated Microbial Genomes platform. In particular, in this search gene XAC3225 is nearly always adjacent to XAC3224 (//xopE3//), suggesting that the protein coded by XAC3225 is an interaction partner of XopE3. Moreira //et al.// (2010) commented on this as follows: "Next to //xopE3// (XAC3224) we find gene XAC3225, whose product is annotated as tranglycosylase //mltB//. This gene has strong similarity (e-value 10-133 , 100% coverage) to //hopAJ1// from //P. syringae// pv. //tomato// strain DC3000, where it is annotated as a T3SS helper protein. Although the //hopAJ1// gene is not itself a T3SS substrate, it contributes to effector translocation (Oh //et al.//, 2007). A mutant with a deletion of XAC3225 has reduced ability to cause canker (mutant phenotypes include a reduction in water soaking, hyperplasia, and necrosis compared to wild type) (Laia //et al.//, 2009)". ===== Conservation ===== === In xanthomonads === Yes (//e.g.//, //X. citri, X. arboricola, X. axonopodis//). === In other plant pathogens/symbionts === Yes (//Ralstonia, Pseudomonas, Acidovorax//). ===== References ===== da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira, MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA,Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos SM, Truffi D, Tsai, SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two //Xanthomonas// pathogens with differing host specificities. Nature 417: 459-463. DOI: [[https://doi.org/10.1038/417459a|10.1038/417459a]] Dunger G, Garofalo CG, Gottig N, Garavaglia BS, Rosa MC, Farah CS, Orellano EG, Ottado J (2012). Analysis of three //Xanthomonas axonopodis// pv. citri effector proteins in pathogenicity and their interactions with host plant proteins. Mol. Plant Pathol. 13: 865-876. DOI: [[https://doi.org/10.1111/j.1364-3703.2012.00797.x|10.1111/j.1364-3703.2012.00797.x]] Guo Y, Figueiredo F, Jones J, Wang N (2011). HrpG and HrpX play global roles in coordinating different virulence traits of //Xanthomonas axonopodis// pv. citri. Mol Plant Microbe Interact. 24: 649-661. DOI: [[https://doi.org/10.1094/MPMI-09-10-0209|10.1094/MPMI-09-10-0209]] Laia ML, Moreira LM, Dezajacomo J, Brigati JB, Ferreira CB, Ferro MI, Silva AC, Ferro JA, Oliveira JC (2009). New genes of //Xanthomonas citri// subsp. //citri// involved in pathogenesis and adaptation revealed by a transposon-based mutant library. BMC Microbiol. 2009, 9: 12. DOI: [[https://doi.org/10.1186/1471-2180-9-12|10.1186/1471-2180-9-12]] Moreira LM, Almeida NF, Potnis N, Digiampietri LA, Adi SS, Bortolossi JC, da Silva AC, da Silva AM, de Moraes FE, de Oliveira JC, de Souza RF (2010). Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of //Xanthomonas fuscans// subsp. //aurantifolii//. BMC Genomics 11: 238. DOI: [[https://doi.org/10.1186/1471-2164-11-238|10.1186/1471-2164-11-238]] Nimchuk ZL, Fisher EJ, Desvaux D, Chang JH, Dangl JL (2007). The HopX (AvrPphE) family of //Pseudomonas syringae// type III effectors require a catalytic triad and a novel N-terminal domain forfunction. Mol. Plant Microbe Interact. 20: 346-357. DOI: [[https://doi.org/10.1094/MPMI-20-4-0346|10.1094/MPMI-20-4-0346]] Oh HS, Kvitko BH, Morello JE, Collmer A (2007). //Pseudomonas syringae// lytic transglycosylases coregulated with the type III secretion system contribute to the translocation of effector proteins into plant cells. J. Bacteriol. 189: 8277-8289. DOI: [[https://doi.org/10.1128/JB.00998-07|10.1128/JB.00998-07]]