User Tools

Site Tools


bacteria:t3e:avrbs3

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:avrbs3 [2020/08/07 11:29]
jensboch
bacteria:t3e:avrbs3 [2020/11/30 13:33] (current)
st
Line 2: Line 2:
  
 Author: [[https://www.researchgate.net/profile/Nay_Dia2|Nay C. Dia]]\\ Author: [[https://www.researchgate.net/profile/Nay_Dia2|Nay C. Dia]]\\
-Internal reviewer: Jens Boch\\ +Internal reviewer: [[https://www.genetik.uni-hannover.de/boch.html|Jens Boch]]\\ 
-Expert reviewer: FIXME+Expert reviewer: [[https://www.researchgate.net/profile/Sabine_Thieme3|Sabine Thieme]]
  
 Class: AvrBs3\\ Class: AvrBs3\\
Line 15: Line 15:
 === How discovered? === === How discovered? ===
  
-The gene //avrBs3 //was cloned in 1989 and was the first gene described of the TAL effector family (Minsavage //et al//., 1990). Different resistant and susceptible cultivars of peppers were inoculated with //Xcv// strains 71-21 and 82-8 (Bonas //et al//., 1989). The pepper cultivar ECW-30R carries the resistance gene //Bs3 //and inoculation of these //Xcv// strains provoked a hypersensitive response (HR) (Bonas //et al//., 1989). This indicated that both //Xcv// strains contained //avrBs3//.+The gene //avrBs3 //was cloned in 1989 and was the first gene described of the TAL effector (TALE) family (Minsavage //et al//., 1990). Different resistant and susceptible cultivars of peppers were inoculated with //Xcv// strains 71-21 and 82-8 (Bonas //et al//., 1989). The pepper cultivar ECW-30R carries the resistance gene //Bs3 //and inoculation of these //Xcv// strains provoked a hypersensitive response (HR) (Bonas //et al//., 1989). This indicated that both //Xcv// strains contained //avrBs3//.
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-AvrBs3 is secreted and translocated into the plant via the Hrp type III secretion system (Bonas //et al//., 1991; Van den Ackerveken //et al//., 1996; Bonas //et al//., 1999). In contrast to wild-type bacteria, an //Xcv// mutant carrying a deletion in //hrcV//, a conserved //hrp// gene, did not secrete AvrBs3 indicating that it is transported by the Hrp system (Rossier //et al//., 1999). In its C-terminal domain, AvrBs3 carries an acidic activation domain which is functional in plant cells (Van den Ackerveken //et al//., 1996). Two nuclear localization signals in the C-terminal domain of AvrBs3 facilitate transport into the plant cell nucleus (Van den Ackerveken //et al//., 1996; Szurek //et al//., 2002).+AvrBs3 is secreted and translocated into the plant via the Hrp type III secretion system (Bonas //et al//., 1991; Van den Ackerveken //et al//., 1996; Bonas //et al//., 1999). In contrast to wild-type bacteria, an //Xcv// mutant carrying a deletion in the conserved //hrp// gene //hrcV// did not secrete AvrBs3 indicating that AvrBs3 is transported by the Hrp system (Rossier //et al//., 1999). The first 10 and 50 amino acids of AvrBs3 are required for secretion and translocation, respectively (Scheibner //et al//., 2017). In its C-terminal domain, AvrBs3 carries an acidic activation domain which is functional in plant cells (Van den Ackerveken //et al//., 1996). Two nuclear localization signals in the C-terminal domain of AvrBs3 facilitate transport into the plant cell nucleus (Van den Ackerveken //et al//., 1996; Szurek //et al//., 2002). These eukaryotic features support the role of AvrBs3 and members of the TALE family within the eukaryotic host cell.
 === Regulation === === Regulation ===
  
-Unlike most other type III effectors, expression of //avrBs3// is not dependend on the hrp regulon. The gene does not contain a PIP box in its promoter region. It is expressed constitutively in cells grown in minimal or complex medium and in planta (Knoop //et al//., 1991).+Unlike most other type III effectors, expression of //avrBs3// is not dependend on the hrp regulon and the gene does not contain a PIP box in its promoter region. It is expressed constitutively in cells grown in minimal or complex medium and in planta (Knoop //et al//., 1991).
 === Phenotypes === === Phenotypes ===
  
-The central region of the //avrBs3// gene consists of 17.5 nearly identical 102 bp repeats. Each repeat encodes 34 amino acids (Bonas //et al//., 1989).+AvrBs3, as well as other members of the TALE family, function as specific transcription factors in plant cells. These proteins bind to specific sequences in promoters and induce expression of downstream genesThe DNA-binding specificity is encoded in the order of individual 34-amino acid repeats which each recognize one DNA baseDifferent TALEs typically contain different repeats and accordingly bind to different DNA sequences and target different host genes. The contributions of individual TALEs to virulence can thus be quite diverse.
  
-Expression analysis using gene promoter fusion and western blot analysis demonstrated that //avrBs3// was expressed and resulted in a 122 kDa protein (1164 aa) which was detectable using a specific polyclonal antibody (Bonas //et al//., 1989). AvrBs3 binds to the promotor of its target genes and activates their transcription. Differential cDNA analysis from pepper plants infected with //Xcv// with or without AvrBs3 led to the discovery of //upa// (upregulated by AvrBs3) genes whose expression is induced by AvrBs3. These //upa// genes all share a conserved promoter element, known as the //UPA// box (Kay //et al.//, 2007). //upa20// act as a master regulator of cell enlargement causing the hypertrophy symptoms associated with AvrBs3. Silencing of //upa20// decreased cell hypertrophy in infected plants while the expression of //upa20// led to hypertrophy in uninfected plants (Kay //et al//., 2007). The promoter of //Bs3// contains the //UPA// box that is bound by AvrBs3 resulting in the transcription of gene //Bs3//. //Bs3// encodes a protein that is homologous to flavine-dependent mono-oxygenases. The N‐terminal repeats in AvrBs3 correspond to the 5′‐end of the UPA box, and the C‐terminal repeats of AvrBs3 correspond to the 3′‐end of the UPA box (Boch //et al//., 2009; Moscou & Bogdanove, 2009). Repeat variable di-residues (RVDs) at positions 12 and 13 determine the specificity of each repeat, thus elucidating how AvrBs3 and other TALEs bind to DNA (Boch //et al//., 2009; Moscou & Bogdanove, 2009, Herbers //et al//., 1992; Lee //et al//., 2013). The activity of the protein is also dependent on nuclear localization signals (NLSs) and the acidic activation domain. Using a green fluorescent protein fusion in the NLSs of AvrBs3, it was shown that the dimerization takes place specifically in the cytoplasm of the plant before being transported into the nucleus (Gürlebeck //et al//., 2005).+Expression analysis using gene promoter fusion and western blot analysis demonstrated that //avrBs3// was expressed and resulted in a 122 kDa protein (1164 aa) which was detectable using a specific polyclonal antibody (Bonas //et al//., 1989). The AvrBs3 effector protein elicits two different types of responses in resistant or susceptible plants. In susceptible pepper plants (Early Cal Wonder; ECW), hypertrophy (i.e. enlargement of mesophyll cells) is triggered by AvrBs3 (Bonas //et al//., 1989; Bonas //et al//., 1991; Marois //et al//., 2002). //Agrobacterium// strains carrying a vector with //avrBs3// induced pustules (hypertrophy) 4-5 dpi in various solanaceous plants including //Nicotiana// //clevelandii//, //N.// //benthamiana//, //N.// //tabacum//, //Petunia hybrida//, //Physalis alkekengi//, //Solanum americanum// and potato (//S.// //tuberosum//), whereas //Agrobacterium// strains carrying an empty vector did not cause any changes in inoculated plants (Marois //et al//., 2002; Kay //et al//., 2007). Differential cDNA analysis from susceptible pepper plants infected with //Xcv// with or without AvrBs3 led to the discovery of //upa// (upregulated by AvrBs3) genes whose expression is induced by AvrBs3 (Marois //et al.//, 2002; Kay //et al//., 2007). These //UPA// genes all share a conserved promoter element, known as the //UPA// box (Kay //et al.//, 2007). //UPA20// acts as a master regulator of cell enlargement causing the hypertrophy symptoms associated with AvrBs3. Silencing of //UPA20// decreased cell hypertrophy in infected plants while the expression of //UPA20// led to hypertrophy in uninfected plants (Kay //et al//., 2007).
  
-The AvrBs3 effector protein elicits two different types of responses in resistant or susceptible plants. Gene //Bs3// was introduced into the ECW background to generate near-isogenic line resistant ECW-30R (Bonas //et al//., 1989; Bonas //et al//., 1991). ECW-30R was inoculated using different //Xcv// strains. //Xcv// lines 71-21 and 82-8 induces a hypersensitive response HR in ECW-30Rleading to programmed cell death and thus preventing the spread of the pathogen (Bonas //et al//., 1989; Bonas //et al//., 1991). Different //Xcv// strains were inoculated on susceptible (Early Cal Wonder; ECW) pepper plantsHypertrophy (i.e. enlargement of mesophyll cells) was observed (Bonas //et al//., 1989; Bonas //et al//., 1991; Kay //et al//., 2007Marois //et al//.2002). It was also speculated that this hypertrophy facilitated bacterial colonization (Kay //et al//., 2007). //Agrobacterium// strains carrying a vector with //avrBs3// induced pustules 4-5 dpi in //Nicotiana// //clevelandii//, //N.// //benthamiana//, //N.// //tabacum//, and in potato (//Solanum// //tuberosum//), whereas //Agrobacterium// strains carrying an empty vector did not cause any changes in inoculated plants (Marois //et al//.2002).+In resistant pepper plants, the promoter of //Bs3// contains a //UPA// box that is bound by AvrBs3 resulting in the transcription of the gene //Bs3//. //Bs3// encodes a protein that is homologous to flavine-dependent mono-oxygenases (Römer //et al//.2007) and its expression causes rapid cell death thus preventing the spread of the pathogen (Bonas //et al//., 1989; Bonas //et al//., 1991). 
 + 
 +The central region of the //avrBs3// gene consists of 17.5 nearly identical 102 bp repeatsEach repeat encodes 34 amino acids (Bonas //et al//., 1989)Repeat variable di-residues (RVDs) at positions 12 and 13 determine the specificity of each repeat (Boch //et al//., 2009Moscou & Bogdanove2009). Rearranging individual repeats enables construction of any desired DNA-binding specificity (Boch //et al.//, 2009).
 === Localization === === Localization ===
  
 The //avrBs3// gene is localized on pXV11, a self-transmissible plasmid, and was initially isolated from //Xcv// strain 71-21 (Bonas //et al//., 1989). Using complementation of //Xcv// strain 85-10 (virulent on pepper ECW-30R), a 5-kb fragment including //avrBs3// was discovered (Bonas //et al//., 1989). The //avrBs3// gene is localized on pXV11, a self-transmissible plasmid, and was initially isolated from //Xcv// strain 71-21 (Bonas //et al//., 1989). Using complementation of //Xcv// strain 85-10 (virulent on pepper ECW-30R), a 5-kb fragment including //avrBs3// was discovered (Bonas //et al//., 1989).
-=== Enzymatic function ===+=== Molecular function ===
  
 DNA-binding protein. Transcriptional activator. DNA-binding protein. Transcriptional activator.
Line 38: Line 40:
 === Interaction partners === === Interaction partners ===
  
-Importin alpha (Szurek //et al.//, 2001). Transcription factor IIA, gamma subunit interacts with the C-terminal domain of TAL effectors (REF).+Importin alpha (Szurek //et al.//, 2001) interacts with the nuclear localization sequences of AvrBs3The basal transcription factor IIA, gamma subunit from rice interacts with a region in the C-terminal domain of TALEs (Yuan //et al//., 2016) and similar interactions might be possible for AvrBs3, too. AvrBs3 and the TALE-family of effectors bind to DNA (Kay //et al//., 2007; Römer //et al//., 2007) with their N-terminal domain exhibiting general DNA-binding properties (Gao //et al.//, 2012) and the repeat region facilitating specific interaction to DNA bases (Boch //et al//., 2009; Moscou & Bogdanove, 2009).
 ===== Conservation ===== ===== Conservation =====
  
 === In xanthomonads === === In xanthomonads ===
  
-Yes (//e.g.////X. campestris//, //X. citri//, //X. euvesicatoria//, //X. hyacinthi//, //X. oryzae// , //X. theicola////Xtranslucens//)+Yes, in many pathovarsbut not necesssarily all strains within a pathovar. 
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
-Yes: //Ralstonia solanacearum//Genes homologous to //avrBs3// of //Xanthomonas// were detected in some strains of //Ralstonia solanacearum// biovars 3, 4 and 5 (Heuer //et al//., 2007).+Yes: Genes homologous to //avrBs3// of //Xanthomonas// were detected in some strains of //Ralstonia solanacearum// biovars 3, 4 and 5 (Heuer //et al//., 2007), in endofungal strains of //Burkholderia rhizoxinica // (Lacker //et al//., 2011), and in unknown marine organisms. All these related proteins can bind DNA (de Lange //et al//., 2013; de Lange //et al.//, 2014; de Lange //et al//., 2015).
 ===== References ===== ===== References =====
  
Line 56: Line 59:
  
 Bonas U, Van den Ackerveken G (1999). Gene-for-gene interactions: bacterial avirulence proteins specify plant disease resistance. Curr. Opin. Microbiol. 2: 94-98. DOI: [[https://doi.org/10.1016/S1369-5274(99)80016-2|10.1016/S1369-5274(99)80016-2]] Bonas U, Van den Ackerveken G (1999). Gene-for-gene interactions: bacterial avirulence proteins specify plant disease resistance. Curr. Opin. Microbiol. 2: 94-98. DOI: [[https://doi.org/10.1016/S1369-5274(99)80016-2|10.1016/S1369-5274(99)80016-2]]
 +
 +de Lange O, Schreiber T, Schandry N, Radeck J, Braun KH, Koszinowski J, Heuer H, Strauß A, Lahaye T (2013). Breaking the DNA-binding code of //Ralstonia solanacearum// TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease. New Phytol. 199: 773-786. DOI: [[https://doi.org/10.1111/nph.12324|10.1111/nph.12324]]
 +
 +de Lange O, Wolf C, Dietze J, Elsaesser J, Morbitzer R, Lahaye T (2014). Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain. Nuc. Acids Res. 42: 7436-7449. DOI: [[https://doi.org/10.1093/nar/gku329.|10.1093/nar/gku329.]]
 +
 +de Lange O, Wolf C, Thiel P, Krüger J, Kleusch C, Kohlbacher O, Lahaye T (2015). DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats. Nuc. Acids Res. 43: 10065-10080. DOI: [[https://doi.org/10.1093/nar/gkv1053|10.1093/nar/gkv1053]]
  
 Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu JK, Shi Y, Yan N (2012a). Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335: 720-723. DOI: [[https://doi.org/10.1126/science.1215670|10.1126/science.1215670]] Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu JK, Shi Y, Yan N (2012a). Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335: 720-723. DOI: [[https://doi.org/10.1126/science.1215670|10.1126/science.1215670]]
Line 64: Line 73:
  
 Gao H, Wu X, Chai J, Han Z (2012). Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region. Cell Res. 22: 1716-1720. DOI: [[https://doi.org/10.1038/cr.2012.156|10.1038/cr.2012.156]] Gao H, Wu X, Chai J, Han Z (2012). Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region. Cell Res. 22: 1716-1720. DOI: [[https://doi.org/10.1038/cr.2012.156|10.1038/cr.2012.156]]
- 
-Gürlebeck D, Szurek B, Bonas U (2005). Dimerization of the bacterial effector protein AvrBs3 in the plant cell cytoplasm prior to nuclear import. Plant J. 42: 175-187. DOI: [[https://doi.org/10.1111/j.1365-313X.2005.02370.x|10.1111/j.1365-313X.2005.02370.x]] 
  
 Herbers K, Conrads-Strauch J, Bonas U (1992). Race-specificity of plant resistance to bacterial spot disease determined by repetitive motifs in a bacterial avirulence protein. Nature 356: 172-174. DOI: [[https://doi.org/10.1038/356172a0|10.1038/356172a0]] Herbers K, Conrads-Strauch J, Bonas U (1992). Race-specificity of plant resistance to bacterial spot disease determined by repetitive motifs in a bacterial avirulence protein. Nature 356: 172-174. DOI: [[https://doi.org/10.1038/356172a0|10.1038/356172a0]]
Line 72: Line 79:
  
 Hopkins CM, White FF, Choi SH, Guo A, Leach JE (1992). Identification of a family of avirulence genes from //Xanthomonas// //oryzae// pv. //oryzae//. Mol. Plant Microbe Interact. 5: 451-459. DOI: [[https://doi.org/10.1094/mpmi-5-451|10.1094/mpmi-5-451]] Hopkins CM, White FF, Choi SH, Guo A, Leach JE (1992). Identification of a family of avirulence genes from //Xanthomonas// //oryzae// pv. //oryzae//. Mol. Plant Microbe Interact. 5: 451-459. DOI: [[https://doi.org/10.1094/mpmi-5-451|10.1094/mpmi-5-451]]
- 
-Ji ZY, Xiong L, Zou LF, Li YR, Ma WX, Liu L, Zakria M, Ji GH, Chen GY (2014). AvrXa7-Xa7 mediated defense in rice can be suppressed by transcriptional activator-like effectors TAL6 and TAL11a from //Xanthomonas oryzae// pv. //oryzicola//. Mol. Plant Microbe Interact. 27: 983-995. DOI: [[https://doi.org/10.1094/MPMI-09-13-0279-R|10.1094/MPMI-09-13-0279-R]]. **Retraction in: Mol. Plant Microbe Interact. (2014) 27: 1413.** FIXME 
  
 Kay S, Hahn S, Marois E, Hause G, Bonas U (2007). A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318: 648-651. DOI: [[http://dx.doi.org/10.1126/science.1144956|10.1126/science.1144956]] Kay S, Hahn S, Marois E, Hause G, Bonas U (2007). A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318: 648-651. DOI: [[http://dx.doi.org/10.1126/science.1144956|10.1126/science.1144956]]
  
-Knoop V, Staskawicz B, Bonas U (1991). Expression of the avirulence gene //avrBs3// from //Xanthomonas// //campestris// pv. //vesicatoria// is not under the control of the //hrp// genes and is independent of plant factors. J. Bacteriol. 173: 7142-7150. DOI:  [[http://dx.doi.org/10.1126/science.1144956|10.1128/jb.173.22.7142-7150.1991]]+Knoop V, Staskawicz B, Bonas U (1991). Expression of the avirulence gene //avrBs3// from //Xanthomonas// //campestris// pv. //vesicatoria// is not under the control of the //hrp// genes and is independent of plant factors. J. Bacteriol. 173: 7142-7150. DOI: [[http://dx.doi.org/10.1128/jb.173.22.7142-7150.1991|10.1128/jb.173.22.7142-7150.1991]]
  
-Lee AHYMiddleton MAGuttman DSDesveaux D (2013). Phytopathogen type III effectors as probes of biological systems. Microb. Biotech6230-240. DOI: [[https://doi.org/10.1111/1751-7915.12042|10.1111/1751-7915.12042]]+Lackner GMoebius NPartida-Martinez LP, Boland SHertweck C (2011). Evolution of an endofungal lifestyle: Deductions from the //Burkholderia rhizoxinica// genomeBMC Genomics 12210. DOI: [[https://doi.org/10.1186/1471-2164-12-210|10.1186/1471-2164-12-210]]
  
 Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012). The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335: 716-719. DOI: [[https://doi.org/10.1126/science.1216211|10.1126/science.1216211]] Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012). The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335: 716-719. DOI: [[https://doi.org/10.1126/science.1216211|10.1126/science.1216211]]
Line 90: Line 95:
  
 Murakami MT, Sforça ML, Neves JL, Paiva JH, Domingues MN, Pereira AL, Zeri AC, Benedetti CE (2010). The repeat domain of the type III effector protein PthA shows a TPR-like structure and undergoes conformational changes upon DNA interaction. Proteins 78: 3386-3395. DOI: [[https://doi.org/10.1002/prot.22846|10.1002/prot.22846]] Murakami MT, Sforça ML, Neves JL, Paiva JH, Domingues MN, Pereira AL, Zeri AC, Benedetti CE (2010). The repeat domain of the type III effector protein PthA shows a TPR-like structure and undergoes conformational changes upon DNA interaction. Proteins 78: 3386-3395. DOI: [[https://doi.org/10.1002/prot.22846|10.1002/prot.22846]]
 +
 +Römer P, Hahn S, Jordan T, Strauss T, Bonas U, Lahaye T (2007). Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318: 645-648. DOI: [[https://doi.org/10.1126/science.1144958|10.1126/science.1144958]]
  
 Rossier O, Wengelnik K, Hahn K, Bonas U (1999). The //Xanthomonas// Hrp type III system secretes proteins from plant and mammalian bacterial pathogens. Proc. Natl. Acad. Sci. USA 96: 9368-9373. DOI: [[https://doi.org/10.1073/pnas.96.16.9368|10.1073/pnas.96.16.9368]] Rossier O, Wengelnik K, Hahn K, Bonas U (1999). The //Xanthomonas// Hrp type III system secretes proteins from plant and mammalian bacterial pathogens. Proc. Natl. Acad. Sci. USA 96: 9368-9373. DOI: [[https://doi.org/10.1073/pnas.96.16.9368|10.1073/pnas.96.16.9368]]
  
-Scheibner F, Marillonnet S, Büttner D (2017). The TAL effector AvrBs3 from //Xanthomonas campestris// pv. //vesicatoria// contains multiple export signals and can enter plant cells in the absence of the type III secretion translocon. Front Microbiol. 8: 2180. DOI: [[https://doi.org/10.3389/fmicb.2017.02180|10.3389/fmicb.2017.02180]] FIXME  Information needs to be added to the profil!+Scheibner F, Marillonnet S, Büttner D (2017). The TAL effector AvrBs3 from //Xanthomonas campestris// pv. //vesicatoria// contains multiple export signals and can enter plant cells in the absence of the type III secretion translocon. Front Microbiol. 8: 2180. DOI: [[https://doi.org/10.3389/fmicb.2017.02180|10.3389/fmicb.2017.02180]]
  
 Stella S, Molina R, Yefimenko I, Prieto J, Silva G, Bertonati C, Juillerat A, Duchateau P, Montoya G (2013). Structure of the AvrBs3–DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Cryst. 69: 1707-1716. DOI: [[http://dx.doi.org/10.1107/S0907444913016429|10.1107/S0907444913016429]] Stella S, Molina R, Yefimenko I, Prieto J, Silva G, Bertonati C, Juillerat A, Duchateau P, Montoya G (2013). Structure of the AvrBs3–DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Cryst. 69: 1707-1716. DOI: [[http://dx.doi.org/10.1107/S0907444913016429|10.1107/S0907444913016429]]
Line 117: Line 124:
 Hutin M, Pérez-Quintero AL, Lopez C, Szurek B (2015). MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility. Front. Plant Sci. 6: 535. DOI: [[https://doi.org/10.3389/fpls.2015.00535|10.3389/fpls.2015.00535]]. Erratum in: Front Plant Sci. (2015) 6: 647. Hutin M, Pérez-Quintero AL, Lopez C, Szurek B (2015). MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility. Front. Plant Sci. 6: 535. DOI: [[https://doi.org/10.3389/fpls.2015.00535|10.3389/fpls.2015.00535]]. Erratum in: Front Plant Sci. (2015) 6: 647.
  
-Scholze HBoch J (2010). TAL effector-DNA specificity. Virulence 1: 428-432. DOI: [[https://doi.org/10.4161/viru.1.5.12863|10.4161/viru.1.5.12863]] +Xue J, Lu Z, Liu W, Wang S, Lu DWang X, He X (2020). The genetic arms race between plant and //Xanthomonas//: lessons learned from TALE biologySciChina Life Sci63. DOI: [[https://doi.org/10.1007/s11427-020-1699-4|10.1007/s11427-020-1699-4]]
- +
-Scholze H, Boch J (2011). TAL effectors are remote controls for gene activation. Curr. Opin. Microbiol. 14: 47-53. DOI: [[https://doi.org/10.1016/j.mib.2010.12.001|10.1016/j.mib.2010.12.001]]+
  
 Zhang J, Yin Z, White F (2015). TAL effectors and the executor //R// genes. Front. Plant Sci. 6: 641. DOI: [[https://doi.org/10.3389/fpls.2015.00641|10.3389/fpls.2015.00641]] Zhang J, Yin Z, White F (2015). TAL effectors and the executor //R// genes. Front. Plant Sci. 6: 641. DOI: [[https://doi.org/10.3389/fpls.2015.00641|10.3389/fpls.2015.00641]]
  
bacteria/t3e/avrbs3.1596792596.txt.gz · Last modified: 2020/08/07 11:29 by jensboch