User Tools

Site Tools


bacteria:t3e:avrbs3

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:avrbs3 [2020/08/07 15:46]
jensboch
bacteria:t3e:avrbs3 [2020/11/30 13:33] (current)
st
Line 2: Line 2:
  
 Author: [[https://www.researchgate.net/profile/Nay_Dia2|Nay C. Dia]]\\ Author: [[https://www.researchgate.net/profile/Nay_Dia2|Nay C. Dia]]\\
-Internal reviewer: Jens Boch\\ +Internal reviewer: [[https://www.genetik.uni-hannover.de/boch.html|Jens Boch]]\\ 
-Expert reviewer: FIXME+Expert reviewer: [[https://www.researchgate.net/profile/Sabine_Thieme3|Sabine Thieme]]
  
 Class: AvrBs3\\ Class: AvrBs3\\
Line 18: Line 18:
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-AvrBs3 is secreted and translocated into the plant via the Hrp type III secretion system (Bonas //et al//., 1991; Van den Ackerveken //et al//., 1996; Bonas //et al//., 1999). In contrast to wild-type bacteria, an //Xcv// mutant carrying a deletion in the conserved //hrp// gene //hrcV// did not secrete AvrBs3 indicating that AvrBs3 is transported by the Hrp system (Rossier //et al//., 1999). In its C-terminal domain, AvrBs3 carries an acidic activation domain which is functional in plant cells (Van den Ackerveken //et al//., 1996). Two nuclear localization signals in the C-terminal domain of AvrBs3 facilitate transport into the plant cell nucleus (Van den Ackerveken //et al//., 1996; Szurek //et al//., 2002). These eukaryotic features support the role of AvrBs3 and members of the TALE family within the eukaryotic host cell.+AvrBs3 is secreted and translocated into the plant via the Hrp type III secretion system (Bonas //et al//., 1991; Van den Ackerveken //et al//., 1996; Bonas //et al//., 1999). In contrast to wild-type bacteria, an //Xcv// mutant carrying a deletion in the conserved //hrp// gene //hrcV// did not secrete AvrBs3 indicating that AvrBs3 is transported by the Hrp system (Rossier //et al//., 1999). The first 10 and 50 amino acids of AvrBs3 are required for secretion and translocation, respectively (Scheibner //et al//., 2017). In its C-terminal domain, AvrBs3 carries an acidic activation domain which is functional in plant cells (Van den Ackerveken //et al//., 1996). Two nuclear localization signals in the C-terminal domain of AvrBs3 facilitate transport into the plant cell nucleus (Van den Ackerveken //et al//., 1996; Szurek //et al//., 2002). These eukaryotic features support the role of AvrBs3 and members of the TALE family within the eukaryotic host cell.
 === Regulation === === Regulation ===
  
Line 24: Line 24:
 === Phenotypes === === Phenotypes ===
  
-AvrBs3, as well as other members of the TALE-family, function as specific transcription factors in plant cells. These proteins bind to specific sequences in promoters and induce expression of downstream genes. The DNA-binding specificity is encoded in the order of individual 34-amino acid repeats which each recognize one DNA base. Different TALEs typically contain different repeats and accordingly bind to different DNA sequences and target different host genes. The contributions of individual TALEs to virulence can thus be quite diverse.+AvrBs3, as well as other members of the TALE family, function as specific transcription factors in plant cells. These proteins bind to specific sequences in promoters and induce expression of downstream genes. The DNA-binding specificity is encoded in the order of individual 34-amino acid repeats which each recognize one DNA base. Different TALEs typically contain different repeats and accordingly bind to different DNA sequences and target different host genes. The contributions of individual TALEs to virulence can thus be quite diverse.
  
-Expression analysis using gene promoter fusion and western blot analysis demonstrated that //avrBs3// was expressed and resulted in a 122 kDa protein (1164 aa) which was detectable using a specific polyclonal antibody (Bonas //et al//., 1989). The AvrBs3 effector protein elicits two different types of responses in resistant or susceptible plants. In susceptible pepper plants (Early Cal Wonder; ECW), hypertrophy (i.e. enlargement of mesophyll cells) is triggered by AvrBs3 (Bonas //et al//., 1989; Bonas //et al//., 1991; Marois //et al//., 2002). //Agrobacterium// strains carrying a vector with //avrBs3// induced pustules (hypertrophy) 4-5 dpi in //Nicotiana// //clevelandii//, //N.// //benthamiana//, //N.// //tabacum//, and in potato (//Solanum// //tuberosum//), whereas //Agrobacterium// strains carrying an empty vector did not cause any changes in inoculated plants (Marois //et al//., 2002). Differential cDNA analysis from susceptible pepper plants infected with //Xcv// with or without AvrBs3 led to the discovery of //upa// (upregulated by AvrBs3) genes whose expression is induced by AvrBs3 (Marois //et al.//, 2002; Kay //et al//., 2007). These //upa// genes all share a conserved promoter element, known as the //UPA// box (Kay //et al.//, 2007). //upa20// act as a master regulator of cell enlargement causing the hypertrophy symptoms associated with AvrBs3. Silencing of //upa20// decreased cell hypertrophy in infected plants while the expression of //upa20// led to hypertrophy in uninfected plants (Kay //et al//., 2007).+Expression analysis using gene promoter fusion and western blot analysis demonstrated that //avrBs3// was expressed and resulted in a 122 kDa protein (1164 aa) which was detectable using a specific polyclonal antibody (Bonas //et al//., 1989). The AvrBs3 effector protein elicits two different types of responses in resistant or susceptible plants. In susceptible pepper plants (Early Cal Wonder; ECW), hypertrophy (i.e. enlargement of mesophyll cells) is triggered by AvrBs3 (Bonas //et al//., 1989; Bonas //et al//., 1991; Marois //et al//., 2002). //Agrobacterium// strains carrying a vector with //avrBs3// induced pustules (hypertrophy) 4-5 dpi in various solanaceous plants including //Nicotiana// //clevelandii//, //N.// //benthamiana//, //N.// //tabacum//, //Petunia hybrida//, //Physalis alkekengi//, //Solanum americanum// and potato (//S.// //tuberosum//), whereas //Agrobacterium// strains carrying an empty vector did not cause any changes in inoculated plants (Marois //et al//., 2002; Kay //et al//., 2007). Differential cDNA analysis from susceptible pepper plants infected with //Xcv// with or without AvrBs3 led to the discovery of //upa// (upregulated by AvrBs3) genes whose expression is induced by AvrBs3 (Marois //et al.//, 2002; Kay //et al//., 2007). These //UPA// genes all share a conserved promoter element, known as the //UPA// box (Kay //et al.//, 2007). //UPA20// acts as a master regulator of cell enlargement causing the hypertrophy symptoms associated with AvrBs3. Silencing of //UPA20// decreased cell hypertrophy in infected plants while the expression of //UPA20// led to hypertrophy in uninfected plants (Kay //et al//., 2007).
  
 In resistant pepper plants, the promoter of //Bs3// contains a //UPA// box that is bound by AvrBs3 resulting in the transcription of the gene //Bs3//. //Bs3// encodes a protein that is homologous to flavine-dependent mono-oxygenases (Römer //et al//., 2007) and its expression causes rapid cell death thus preventing the spread of the pathogen (Bonas //et al//., 1989; Bonas //et al//., 1991). In resistant pepper plants, the promoter of //Bs3// contains a //UPA// box that is bound by AvrBs3 resulting in the transcription of the gene //Bs3//. //Bs3// encodes a protein that is homologous to flavine-dependent mono-oxygenases (Römer //et al//., 2007) and its expression causes rapid cell death thus preventing the spread of the pathogen (Bonas //et al//., 1989; Bonas //et al//., 1991).
Line 34: Line 34:
  
 The //avrBs3// gene is localized on pXV11, a self-transmissible plasmid, and was initially isolated from //Xcv// strain 71-21 (Bonas //et al//., 1989). Using complementation of //Xcv// strain 85-10 (virulent on pepper ECW-30R), a 5-kb fragment including //avrBs3// was discovered (Bonas //et al//., 1989). The //avrBs3// gene is localized on pXV11, a self-transmissible plasmid, and was initially isolated from //Xcv// strain 71-21 (Bonas //et al//., 1989). Using complementation of //Xcv// strain 85-10 (virulent on pepper ECW-30R), a 5-kb fragment including //avrBs3// was discovered (Bonas //et al//., 1989).
-=== Enzymatic function ===+=== Molecular function ===
  
 DNA-binding protein. Transcriptional activator. DNA-binding protein. Transcriptional activator.
Line 40: Line 40:
 === Interaction partners === === Interaction partners ===
  
-Importin alpha (Szurek //et al.//, 2001) interacts with the nuclear localization sequences of AvrBs3. The basal transcription factor IIA, gamma subunit from rice interacts with a region in the C-terminal domain of TALEs (Yuan //et al//., 2016) and similar interactions might be possible for AvrBs3, too. AvrBs3 and the TALE-family of effectors bind to DNA (Kay //et al//., 2007; Römer //et al//., 2007) with their N-terminal domain exhibiting general DNA-binding properties (Gao //et al.//, 2012) and the repeat region facilitating specific interaction to DNA bases (Boch //et al//., 2009; Moscou and Bogdanove, 2009).+Importin alpha (Szurek //et al.//, 2001) interacts with the nuclear localization sequences of AvrBs3. The basal transcription factor IIA, gamma subunit from rice interacts with a region in the C-terminal domain of TALEs (Yuan //et al//., 2016) and similar interactions might be possible for AvrBs3, too. AvrBs3 and the TALE-family of effectors bind to DNA (Kay //et al//., 2007; Römer //et al//., 2007) with their N-terminal domain exhibiting general DNA-binding properties (Gao //et al.//, 2012) and the repeat region facilitating specific interaction to DNA bases (Boch //et al//., 2009; Moscou Bogdanove, 2009).
 ===== Conservation ===== ===== Conservation =====
  
 === In xanthomonads === === In xanthomonads ===
  
-Yes in many pathovars, but not necesssarily all strains within a pathovar.+Yesin many pathovars, but not necesssarily all strains within a pathovar.
  
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
Line 100: Line 100:
 Rossier O, Wengelnik K, Hahn K, Bonas U (1999). The //Xanthomonas// Hrp type III system secretes proteins from plant and mammalian bacterial pathogens. Proc. Natl. Acad. Sci. USA 96: 9368-9373. DOI: [[https://doi.org/10.1073/pnas.96.16.9368|10.1073/pnas.96.16.9368]] Rossier O, Wengelnik K, Hahn K, Bonas U (1999). The //Xanthomonas// Hrp type III system secretes proteins from plant and mammalian bacterial pathogens. Proc. Natl. Acad. Sci. USA 96: 9368-9373. DOI: [[https://doi.org/10.1073/pnas.96.16.9368|10.1073/pnas.96.16.9368]]
  
-Scheibner F, Marillonnet S, Büttner D (2017). The TAL effector AvrBs3 from //Xanthomonas campestris// pv. //vesicatoria// contains multiple export signals and can enter plant cells in the absence of the type III secretion translocon. Front Microbiol. 8: 2180. DOI: [[https://doi.org/10.3389/fmicb.2017.02180|10.3389/fmicb.2017.02180]] FIXME  Information needs to be added to the profil!+Scheibner F, Marillonnet S, Büttner D (2017). The TAL effector AvrBs3 from //Xanthomonas campestris// pv. //vesicatoria// contains multiple export signals and can enter plant cells in the absence of the type III secretion translocon. Front Microbiol. 8: 2180. DOI: [[https://doi.org/10.3389/fmicb.2017.02180|10.3389/fmicb.2017.02180]]
  
 Stella S, Molina R, Yefimenko I, Prieto J, Silva G, Bertonati C, Juillerat A, Duchateau P, Montoya G (2013). Structure of the AvrBs3–DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Cryst. 69: 1707-1716. DOI: [[http://dx.doi.org/10.1107/S0907444913016429|10.1107/S0907444913016429]] Stella S, Molina R, Yefimenko I, Prieto J, Silva G, Bertonati C, Juillerat A, Duchateau P, Montoya G (2013). Structure of the AvrBs3–DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Cryst. 69: 1707-1716. DOI: [[http://dx.doi.org/10.1107/S0907444913016429|10.1107/S0907444913016429]]
bacteria/t3e/avrbs3.1596807997.txt.gz · Last modified: 2020/08/07 15:46 by jensboch