User Tools

Site Tools


bacteria:t3e:xopaf

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopaf [2020/07/04 05:53]
guidos
bacteria:t3e:xopaf [2020/07/09 12:45] (current)
rkoebnik [Further reading]
Line 2: Line 2:
  
 Author: [[https://www.researchgate.net/profile/Tamas_Kovacs6|Tamás Kovács]]\\ Author: [[https://www.researchgate.net/profile/Tamas_Kovacs6|Tamás Kovács]]\\
-Internal reviewer: FIXME \\+Internal reviewer: [[https://www.researchgate.net/profile/Guido_Sessa|Guido Sessa]]\\
 Expert reviewer: FIXME Expert reviewer: FIXME
  
 Class: XopAF\\ Class: XopAF\\
 Family: XopAF\\ Family: XopAF\\
-Prototype: AvrXv3 (//Xanthomonas perforans//)\\+Prototype: AvrXv3 (//Xanthomonas euvesicatoria //pv.// perforans//)\\
 RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/|WP_145590005.1]] (218 aa)\\ RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/|WP_145590005.1]] (218 aa)\\
 +Synonym: AvrXv3\\
 3D structure: Unknown 3D structure: Unknown
  
Line 15: Line 16:
 === How discovered? === === How discovered? ===
  
-AvrXv3 was discovered by genetic screen and cloning and sequencing its encoding gene from //Xanthomonas campestris// pv. vesicatoria (Minsavage //et al//., 1996).+AvrXv3 was discovered by genetic screen and cloning and sequencing its encoding gene from //Xanthomonas euvesicatoria// pv. perforans (Minsavage //et al//., 1996).
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
Line 24: Line 25:
 === Phenotypes === === Phenotypes ===
  
- Expression studies with a fusion of this gene and //uidA// indicated that avrXv3 is plant inducible and controlled by the hypersensitivity and pathogenicity (hrp) regulatory system. Mutational analysis and transcription activation assays revealed that AvrXv3 has transcription activation activity in yeast, and that the putative domain responsible for that activity is located at the C terminus of the AvrXv3 protein. //Agrobacterium tumefaciens//-mediated transient expression confirmed the direct role of AvrXv3 in eliciting the hypersensitive response (HR) in tomato NIL 216 and supported the hypothesis that Avr proteins must be present inside the plant host cell to trigger the HR (Astua-Monge //et al//., 2000). Tomato genes differential expressed during the resistance response triggered by AvrXv3 recognition were identified by microarray analysis (Balaji  CKGE_TMP_i et al CKGE_TMP_i ., 2007). +Expression studies with a fusion of this gene and //uidA// indicated that avrXv3 is plant inducible and controlled by the hypersensitivity and pathogenicity (hrp) regulatory system. Mutational analysis and transcription activation assays revealed that AvrXv3 has transcription activation activity in yeast, and that the putative domain responsible for that activity is located at the C terminus of the AvrXv3 protein. //Agrobacterium tumefaciens//-mediated transient expression confirmed the direct role of AvrXv3 in eliciting the hypersensitive response (HR) in tomato NIL 216 and supported the hypothesis that Avr proteins must be present inside the plant host cell to trigger the HR (Astua-Monge //et al//., 2000). Tomato genes differential expressed during the resistance response triggered by AvrXv3 recognition were identified by microarray analysis (Balaji et al., 2007).
 === Localization === === Localization ===
  
Line 36: Line 36:
  
 Tomato RxvT3 resistance protein (has not been identified yet). Tomato RxvT3 resistance protein (has not been identified yet).
 +
 +=====   =====
  
 ===== Conservation ===== ===== Conservation =====
Line 41: Line 43:
 === In xanthomonads === === In xanthomonads ===
  
-Yes (Washington //et al//., 2016).+Yes (//e.g.//, //X. alfalfae//, //X. citri//, //X. translucens//(Washington //et al//., 2016).
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
-Yes (Washington //et al//., 2016).+Yes (//Pseudomonas, Acidovorax//, //Ralstonia// spp.) (Washington //et al//., 2016). 
 ===== References ===== ===== References =====
  
-Astua-Monge G, Minsavage VG, Stall ER, Davis JM, Bonas U, Jones BJ (2000). Resistance of tomato and pepper to T3 strains of //Xanthomonas campestris// pv. vesicatoria is specified by a plant-inducible avirulence gene. Mol. Plant Microbe Interact. 13: 911-921. DOI: [[https://doi.org/10.1094/MPMI.2000.13.9.911|10.1094/MPMI.2000.13.9.911]]+Astua-Monge G, Minsavage VG, Stall ER, Davis JM, Bonas U, Jones BJ (2000). Resistance of tomato and pepper to T3 strains of //Xanthomonas campestris// pv. vesicatoria is specified by a plant-inducible avirulence gene. Mol. Plant Microbe Interact. 13: 911-921. DOI: [[http://doi.org10.1007/s10142-007-0050-y|10.1094/MPMI.2000.13.9.911]]
  
-<font 14px/Arial,Helvetica,sans-serif;;inherit;;inherit>Balaji V, Gibly A, Debbie P, Sessa G (2007).</font>Transcriptional analysis of the tomato resistance response triggered by recognition of the //Xanthomonas// type III effector AvrXv3<font 14px/Arial,Helvetica,sans-serif;;inherit;;inherit>. Funct. Integr. Genomics 7: 305-3016. DOI</font> +Balaji V, Gibly A, Debbie P, Sessa G (2007). Transcriptional analysis of the tomato resistance response triggered by recognition of the //Xanthomonas// type III effector AvrXv3. Funct. Integr. Genomics 7: 305-3016. DOI: [[https://doi.org/10.1007/s10142-007-0050-y|https://doi.org/10.1007/s10142-007-0050-y]]
-: 10.1007/s10142-007-0050-y+
  
-Minsavage GV, Jones JB, Stall RE (1996). Cloning and sequencing of an avirulence gene (//avrRxv3//) isolated from //Xanthomonas campestris// pv. vesicatoria tomato race 3. Phytopathology 86: S15. DOI: [[https://doi.org/10.1094/mpmi-6-616|10.1094/mpmi-6-616]]+Minsavage GV, Jones JB, Stall RE (1996). Cloning and sequencing of an avirulence gene (//avrRxv3//) isolated from //Xanthomonas campestris// pv. vesicatoria tomato race 3. Phytopathology 86: S15.
  
 Roden AJ, Belt B, Ross BJ, Tachibana T, Vargas J, Mudgett BM (2004). A genetic screen to isolate type III effectors traslocated into pepper cells during //Xanthomonas// infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]] Roden AJ, Belt B, Ross BJ, Tachibana T, Vargas J, Mudgett BM (2004). A genetic screen to isolate type III effectors traslocated into pepper cells during //Xanthomonas// infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]]
  
 Washington EJ, Mukhtar MS, Finkel MO, Wan L, Banfield JM, Kieber JJ, Dangl LJ (2016). //Pseudomonas syringae// type III effector HopAF1 suppresses plant immunity by targeting methionine recycling to block ethylene induction. Proc. Natl. Acad. Sci. USA. 113: E3577-E3586. DOI: [[https://doi.org/10.1073/pnas.1606322113|10.1073/pnas.1606322113]] Washington EJ, Mukhtar MS, Finkel MO, Wan L, Banfield JM, Kieber JJ, Dangl LJ (2016). //Pseudomonas syringae// type III effector HopAF1 suppresses plant immunity by targeting methionine recycling to block ethylene induction. Proc. Natl. Acad. Sci. USA. 113: E3577-E3586. DOI: [[https://doi.org/10.1073/pnas.1606322113|10.1073/pnas.1606322113]]
 +
 +===== Further reading =====
 +
 +Gibly A, Bonshtien A, Balaji V, Debbie P, Martin GB, Sessa G (2004). Identification and expression profiling of tomato genes differentially regulated during a resistance response to //Xanthomonas campestris// pv. //vesicatoria//. Mol. Plant Microbe Interact. 17: 1212-1222. DOI: [[https://doi.org/10.1094/MPMI.2004.17.11.1212|10.1094/MPMI.2004.17.11.1212]]
 +
 +Jalan N, Kumar D, Andrade MO, Yu F, Jones JB, Graham JH, White FF, Setubal JC, Wang N (2013). Comparative genomic and transcriptome analyses of pathotypes of //Xanthomonas citri //subsp. //citri// provide insights into mechanisms of bacterial virulence and host range. BMC Genomics 14: 551. DOI: [[https://doi.org/10.1186/1471-2164-14-551|10.1186/1471-2164-14-551]]
 +
 +Timilsina S, Abrahamian P, Potnis N, Minsavage GV, White FF, Staskawicz BJ, Jones JB, Vallad GE, Goss EM (2016). Analysis of sequenced genomes of //Xanthomonas perforans// identifies candidate targets for resistance breeding in tomato. Phytopathology 106: 1097-1104. DOI: [[https://doi.org/10.1094/PHYTO-03-16-0119-FI|10.1094/PHYTO-03-16-0119-FI]]
  
bacteria/t3e/xopaf.1593834838.txt.gz · Last modified: 2020/07/04 05:53 by guidos