User Tools

Site Tools


bacteria:t3e:xopap

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopap [2020/08/02 23:37]
jfpothier
bacteria:t3e:xopap [2021/01/25 21:41] (current)
rkoebnik
Line 3: Line 3:
 Author: [[https://www.researchgate.net/profile/Saul_Burdman|Saul Burdman]]\\ Author: [[https://www.researchgate.net/profile/Saul_Burdman|Saul Burdman]]\\
 Internal reviewer: [[https://www.researchgate.net/profile/Joel_Pothier2|Joël F. Pothier]]\\ Internal reviewer: [[https://www.researchgate.net/profile/Joel_Pothier2|Joël F. Pothier]]\\
-Expert reviewer: FIXME+Expert reviewer: [[https://www.researchgate.net/profile/Doron_Teper|Doron Teper]]
  
 Class: XopAP\\ Class: XopAP\\
Line 10: Line 10:
 RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/CAJ24869.1|CAJ24869.1]] (464 aa)\\ RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/CAJ24869.1|CAJ24869.1]] (464 aa)\\
 3D structure: Unknown 3D structure: Unknown
 +
 +=====   =====
  
 ===== Biological function ===== ===== Biological function =====
Line 21: Line 23:
 === Regulation === === Regulation ===
  
-Unknown. In //X. euvesicatoria// strain 85-10, the //xopAP// gene does not contain a PIP-box motif in its promoter region (Teper //et al//., 2016).+In //X. euvesicatoria// strain 85-10, the //xopAP// gene does not contain a PIP-box motif in its promoter region (Teper //et al//., 2016). //xopAP //in // X. citri //pv. // citri //is positively regulated by the stringent response regulators RelA and SpoT (Zhang et al. 2019).
 === Phenotypes === === Phenotypes ===
  
Line 32: Line 34:
 === Enzymatic function === === Enzymatic function ===
  
-Unknown. XopAL contains a putative lipase domain (lipase class 3 family domain; conserved protein domain family [[https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=PLN03037|PLN03037]]) in amino acid positions 236-322 (Teper //et al//., 2016).+Unknown. XopAP contains a putative lipase domain (lipase class 3 family domain; conserved protein domain family [[https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=PLN03037|PLN03037]]) in amino acid positions 236-322 (Teper //et al//., 2016).
 === Interaction partners === === Interaction partners ===
  
Line 41: Line 43:
 === In xanthomonads === === In xanthomonads ===
  
-Yes (//e.g.,// //X. campestris//, X//. axonopodis//, //X. perforans//, X//. citri, X. alfalfae//, //X. prunicola//, //X. phaseoli//, //X. hortorum//, //X. arboricola//, //X. translucens//, //X. oryzae//, //X. hyacinthi, X. transluscens//) (Potnis //et al//., 2011; Jalan et al., 2013; Peng //et al//., 2016).+Yes (//e.g.,// //X. campestris//, X//. axonopodis//, //X. perforans//, X//. citri, X. alfalfae//, //X. prunicola//, //X. phaseoli//, //X. hortorum//, //X. arboricola//, //X. translucens//, //X. oryzae//, //X. hyacinthi, X. transluscens//) (e.g Potnis //et al//., 2011; Jalan et al., 2013; Peng //et al//., 2016; Constantin //et al//., 2017).
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
Line 47: Line 49:
 ===== References ===== ===== References =====
  
-Jalan N, Kumar D, Andrade MO, Yu F, Jones JB, Graham JH, White FF, Setubal JC, Wang N (2013). Comparative genomic and transcriptome analyses of pathotypes of //Xanthomonas citri// subsp. //citri// provide insights into mechanisms of bacterial virulence and host range. BMC Genomics 14,** **551. DOI: [[https://doi.org/10.1186/1471-2164-14-551|10.1186/1471-2164-14-551]]+Constantin EC, Haegeman A, Van Vaerenbergh J, Baeyen S, Van Malderghem C, Maes M, Cottyn B (2017). Pathogenicity and virulence gene content of //Xanthomonas // strains infecting Araceae, formerly known as //Xanthomonas axonopodis // pv. //dieffenbachiae//. Plant Pathol, 66: 1539-1554. DOI: [[https://doi.org/10.1111/ppa.12694|10.1111/ppa.12694]] 
 + 
 +Jalan N, Kumar D, Andrade MO, Yu F, Jones JB, Graham JH, White FF, Setubal JC, Wang N (2013). Comparative genomic and transcriptome analyses of pathotypes of //Xanthomonas citri// subsp. //citri// provide insights into mechanisms of bacterial virulence and host range. BMC Genomics 14,551. DOI: [[https://doi.org/10.1186/1471-2164-14-551|10.1186/1471-2164-14-551]]
  
 Nakano M, Mukaihara T (2018). //Ralstonia solanacearum// type III effector RipAL targets chloroplasts and induces jasmonic acid production to suppress salicylic acid-mediated responses in plants. Plant Cell Physiol. 59: 2576-2589. DOI: [[https://doi.org/10.1093/pcp/pcy177|10.1093/pcp/pcy177]] Nakano M, Mukaihara T (2018). //Ralstonia solanacearum// type III effector RipAL targets chloroplasts and induces jasmonic acid production to suppress salicylic acid-mediated responses in plants. Plant Cell Physiol. 59: 2576-2589. DOI: [[https://doi.org/10.1093/pcp/pcy177|10.1093/pcp/pcy177]]
Line 53: Line 57:
 Peeters N, Carrere S, Anisimova M, Plener L, Cazale AC, Genin S (2013). Repertoire, unified nomenclature and evolution of the type III effector gene set in the //Ralstonia solanacearum// species complex. BMC Genomics 14: 859. DOI: [[https://doi.org/10.1186/1471-2164-14-859|10.1186/1471-2164-14-859]] Peeters N, Carrere S, Anisimova M, Plener L, Cazale AC, Genin S (2013). Repertoire, unified nomenclature and evolution of the type III effector gene set in the //Ralstonia solanacearum// species complex. BMC Genomics 14: 859. DOI: [[https://doi.org/10.1186/1471-2164-14-859|10.1186/1471-2164-14-859]]
  
-Peng, Z., Hu, Y., Xie, J., Potnis N, Akhunova A, Jones J, Liu Z, White FJ, Liu S (2016). Long read and single molecule DNA sequencing simplifies genome assembly and TAL effector gene analysis of //Xanthomonas translucens//. BMC Genomics 17,** **21. DOI: [[https://doi.org/10.1186/s12864-015-2348-9|10.1186/s12864-015-2348-9]]+Peng, Z., Hu, Y., Xie, J., Potnis N, Akhunova A, Jones J, Liu Z, White FJ, Liu S (2016). Long read and single molecule DNA sequencing simplifies genome assembly and TAL effector gene analysis of //Xanthomonas translucens//. BMC Genomics 17,21. DOI: [[https://doi.org/10.1186/s12864-015-2348-9|10.1186/s12864-015-2348-9]]
  
 Popov G, Fraiture M, Brunner F, Sessa G (2018). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]] Popov G, Fraiture M, Brunner F, Sessa G (2018). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]
Line 60: Line 64:
  
 Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel //Xanthomonas euvesicatoria// type III effector proteins by a machine-learning approach. Mol. Plant Pathol. 17: 398-411. DOI: [[https://doi.org/10.1111/mpp.12288|10.1111/mpp.12288]] Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel //Xanthomonas euvesicatoria// type III effector proteins by a machine-learning approach. Mol. Plant Pathol. 17: 398-411. DOI: [[https://doi.org/10.1111/mpp.12288|10.1111/mpp.12288]]
 +
 +Zhang Y, Teper D, Xu J, Wang N (2019). Stringent response regulators (p)ppGpp and DksA positively regulate virulence and host adaptation of Xanthomonas citri. Mol. Plant Pathol. 20:1550-1565. DOI: [[https://bsppjournals.onlinelibrary.wiley.com/doi/full/10.1111/mpp.12865|10.1111/mpp.12865. ]]
  
bacteria/t3e/xopap.1596404258.txt.gz · Last modified: 2020/08/02 23:37 by jfpothier