User Tools

Site Tools


bacteria:t3e:xopaq

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopaq [2020/04/16 23:55]
127.0.0.1 external edit
bacteria:t3e:xopaq [2020/07/03 09:57] (current)
rkoebnik
Line 1: Line 1:
 ====== XopAQ ====== ====== XopAQ ======
  
-Author: Jose Gadea\\ +Author: [[https://www.researchgate.net/profile/Jose_Gadea|Jose Gadea]]\\ 
-Internal reviewer: FIXME\\+Internal reviewer: [[https://www.researchgate.net/profile/Saul_Burdman|Saul Burdman]]\\
 Expert reviewer: FIXME Expert reviewer: FIXME
  
-Class:XopAQ\\ +Class: XopAQ\\ 
-Family:XopAQ\\+Family: XopAQ\\
 Prototype: XopAQ (//X. gardneri// (Xg); strain 101 = ATCC 19865)\\ Prototype: XopAQ (//X. gardneri// (Xg); strain 101 = ATCC 19865)\\
 GenBank ID: [[https://www.ncbi.nlm.nih.gov/protein/|EGD19295.1]] (95 aa)\\ GenBank ID: [[https://www.ncbi.nlm.nih.gov/protein/|EGD19295.1]] (95 aa)\\
Line 14: Line 14:
  
 === How discovered? === === How discovered? ===
-XopAQ was discovered by sequencing the genome of the //X. gardneri// (Xg) strain 101 (Potnis //et al//., 2011). 
  
 +XopAQ was discovered by sequencing the genome of the //X. gardneri// (Xg) strain 101 (Potnis //et al//., 2011).
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
-A functional screen to isolate //Ralstonia solanacearum// genes encoding proteins translocated into plant cells reveal that the gene Rip6 and Rip11 were two new translocated proteins. XopAQ is 60% identical at the protein level to these two proteins. BlastP alignment between XopAQ and Rip6 indicates that the homology is spanned along the whole protein, including the N-terminal part, suggesting that the functional motif that drives translocation in Rip6 is conserved in XopAQ. Translocation assays using a strain deleted in the hpaB gene of //Ralstonia// indicates that Rip6 and Rip11 requires HpaB for their effective translocation into plant cells via the Hrp T3SS (Mukaihara //et al//., 2010). However, no functional translocation assay has been performed for //Xanthomonas// XopAQ effector to our knowledge. 
  
 +A functional screen to isolate //Ralstonia solanacearum// genes encoding proteins translocated into plant cells revealed that the genes //rip6 //and //rip11 //encode two new translocated proteins. XopAQ is 60% identical to Rip6 and Rip11. BlastP alignment between XopAQ and Rip6 indicates that the homology is spanned along the whole protein, including the N-terminal part, suggesting that the functional motif that drives translocation in Rip6 is conserved in XopAQ. Translocation assays using a strain deleted in the //hpaB //gene of //Ralstonia// indicates that Rip6 and Rip11 requires HpaB for their effective translocation into plant cells via the Hrp-T3SS (Mukaihara //et al//., 2010). However, to the best of our knowledge, no functional translocation assay has been performed for //Xanthomonas// XopAQ.
 === Regulation === === Regulation ===
-XopAQ is up-regulated when //X.citri// pv. //citri// 306 and //X.citri// pv. //citri// Aw12879 (restricted to Mexican lime) are grown in XVM2 medium, known to induce hrp gene expression, as compared with nutrient broth (NB). However, no differential expression was observed in this gene among these two strains (Jalan //et al//., 2013). 
-The //X. arboricola// gene shows a putative plant-inducible promoter box (PIP-BOX) sequence, 67 bp upstream of the TATA box (Garita-Cambronero, 2016b). 
  
 +XopAQ is up-regulated when //X.citri// pv. //citri// 306 and //X.citri// pv. //citri// Aw12879 (restricted to Mexican lime) were grown in XVM2 (a medium that is known to induce expression of //hrp// genes and several effector genes in //Xanthomonas //sp.), as compared with nutrient broth (NB). However, no differential expression was observed for this gene among these two strains (Jalan //et al//., 2013). In //X. arboricola //the //xopAQ //gene has a putative plant-inducible promoter box (PIP-BOX) sequence, 67 bp upstream of the TATA box (Garita-Cambronero, 2016).
 === Phenotypes === === Phenotypes ===
 +
 Unknown. Unknown.
  
 === Localization === === Localization ===
-CSS-Palm suite reveals potential myristoylation/palmitoylation motifs for XopAQ, suggesting that the protein could be targeted to the cytoplasmic membrane (Barak //et al//., 2016). This targeting is facilitated by a simple sequence motif at the N terminus of the polypeptide chain. 
  
 +CSS-Palm suite reveals potential myristoylation/palmitoylation motifs for XopAQ, suggesting that the protein could be targeted to the cytoplasmic membrane (Barak //et al//., 2016). This targeting is facilitated by a simple sequence motif at the N terminus of the polypeptide chain.
 === Enzymatic function === === Enzymatic function ===
-Unknown. No known motifs are found in the Rip6 and Rip11 proteins of //Ralstonia// (Mukaihara //et al//., 2010). No motifs are found in the //X. gardneri// protein neither (Prosite analysis). 
  
 +Unknown. No known motifs are found in the Rip6 and Rip11 proteins of //Ralstonia// (Mukaihara //et al//., 2010). No motifs are found in the //X. gardneri// protein neither (Prosite analysis).
 === Interaction partners === === Interaction partners ===
 +
 Unknown. Unknown.
  
Line 38: Line 39:
  
 === In xanthomonads === === In xanthomonads ===
-Yes. Widely present in the most agressive citrus canker-causing //X.citri// A strains but also in the AW strain (narrow host range) (Escalon //et al//., 2013; Garita-Cambronero //et al//., 2019), and also in the milder //X. fuscans// B strain, but not in the //X. fuscans// C strain (restricted to //C. aurantifoli//; Dalio //et al//., 2017). Present in //Xanthomonas gardneri// but not in some strains of //X. perforans// nor //X. euvesicatoria// strains affecting pepper and tomato (Potnis //et al//., 2011; Schwartz //et al//., 2015; Jibrin //et al//., 2018). Two paralogs of XopAQ present in strains 66b and LMG 918 of //X. euvesicatoria//, but not present in other LMG strains, 83b, 85-10, or //X. euvesicatoria// pv. //rosa// (Barak //et al//., 2016). Present in pathogenic (but not in non-pathogenic//) X. arboricola// pv. //pruni// (Garita-Cambronero //et al//., 2016a, 2019), but not in the related //X. juglandis// or //X. corylina// (Garita-Cambronero //et al//., 2018). Also present in //X. citri// pv. //viticola// (Schwartz //et al//., 2015) and other //X. citri// pathovars (blastp analysis). //X. phaseolis// //and X. populi//, among others, present a protein with moderate homology in a blastp analysis. 
  
 +Yes. The effector is widely present in the most agressive citrus canker-causing //X.citri// A strains but also in the AW strain (narrow host range) (Escalon //et al//., 2013; Garita-Cambronero //et al//., 2019), and also in the milder //X. fuscans// B strain, but not in the //X. fuscans// C strain, whic is restricted to //C. aurantifoli// (Dalio //et al//., 2017). Present in //Xanthomonas gardneri// but not in some strains of //X. perforans// nor //X. euvesicatoria// strains affecting pepper and tomato (Potnis //et al//., 2011; Schwartz //et al//., 2015; Vancheva //et al//., 2015; Jibrin //et al//., 2018). Two paralogs of XopAQ are present in strains 66b and LMG 918 of //X. euvesicatoria//, but not present in other LMG strains, 83b, 85-10, or //X. euvesicatoria// pv. //rosa// (Barak //et al//., 2016). Present in pathogenic but not in non-pathogenic// X. arboricola// pv. //pruni// (Garita-Cambronero //et al//., 2016, 2019). Absent in the related //X. juglandis// or //X. corylina// (Garita-Cambronero //et al//., 2018). Also present in //X. citri// pv. //viticola// (Schwartz //et al//., 2015) and other //X. citri// pathovars (blastp analysis). //X. phaseolis// //and X. populi//, among others, posess putative genes encoding proteins with moderate homology to XopAQ based on Blastp analysis.
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
-Yes (//Ralstonia//). 
  
 +Yes (//Ralstonia//).
 ===== References ===== ===== References =====
  
-Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016). Whole-Genome Sequences of //Xanthomonas euvesicatoria// Strains Clarify Taxonomy and Reveal Stepwise Erosion of Type Effectors. Front Plant Sci. 7: 1805. DOI: [[https://doi.org/10.3389/fpls.2016.01805|10.3389/fpls.2016.01805]].+Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016). Whole-genome sequences of //Xanthomonas euvesicatoria// strains clarify taxonomy and reveal stepwise erosion of type effectors. Front Plant Sci. 7: 1805. DOI: [[https://doi.org/10.3389/fpls.2016.01805|10.3389/fpls.2016.01805]] 
 + 
 +Dalio RJD, Magalhães DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RR, Picchi SC, Martins PMM, Santos PJC, Maximo HJ, Pacheco IS, De Souza AA, Machado MA (2017)PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. Ann. Bot. 119: 749-774. DOI: [[https://doi.org/10.1093/aob/mcw238|10.1093/aob/mcw238]]
  
-Dalio RJDMagalhães DMRodrigues CMArena GDOliveira TSSouza-Neto RRPicchi SCMartins PMMSantos PJCMaximo HJPacheco IS, De Souza AA, Machado MA (2017). PAMPsPRRs, effectors and R-genes associated with citrus-pathogen interactionsAnn Bot119(5)749-774. DOI: [[https://doi.org/10.1093/aob/mcw238|10.1093/aob/mcw238]].+Escalon AJavegny SVernière CNoël LDVital KPoussier SHajri ABoureau TPruvost OArlat MGagnevin L (2013). Variations in type III effector repertoirespathological phenotypes and host range of //Xanthomonas citri// pv//citri// pathotypesMol. Plant. Pathol. 14483-96. DOI: [[https://doi.org/10.1111/mpp.12019|10.1111/mpp.12019]]
  
-Escalon AJavegny S, Vernière CNoël LDVital KPoussier S, Hajri A, Boureau TPruvost OArlat MGagnevin L (2013). Variations in type III effector repertoires, pathological phenotypes and host range of //Xanthomonas citri// pv. //citri// pathotypesMol Plant Pathol14(5)483-96. DOI: [[https://doi.org/10.1111/mpp.12019|10.1111/mpp.12019]].+Ferreira MASVBonneau S, Briand MCesbron SPortier PDarrasse A, Gama MASBarbosa MAGMariano RLR, Souza EBJacques MA (2009). //Xanthomonas citri// pv. //viticola// affecting grapevine in Brazil: Emergence of a successful monomorphic pathogen. Front. Plant Sci10489. DOI: [[https://doi.org/10.3389/fpls.2019.00489|10.3389/fpls.2019.00489]]
  
-Ferreira MASV, Bonneau S, Briand M, Cesbron S, Portier P, Darrasse A, Gama MAS, Barbosa MAG, Mariano RLR, Souza EB, Jacques MA (2009). //Xanthomonas citri// pv. //viticola// affecting grapevine in Brazil: Emergence of a successful monomorphic pathogenFront Plant Sci10: 489DOI: [[https://doi.org/10.3389/fpls.2019.00489|10.3389/fpls.2019.00489]].+Garita-Cambronero J (2016). Genómica comparativa de cepas de //Xanthomonas arborícola// asociadas a //Prunus ssp//. Caracterización de los procesos de infección de la mancha bacteriana de frutales de hueso y almendroDoctoral Thesis, Universidad Politécnica de Madrid, SpainPDF: [[http://oa.upm.es/45480/|oa.upm.es/45480/]]
  
-Garita-Cambronero J, Palacio-Bielsa A, López MM, Cubero J (2016a). Comparative Genomic and Phenotypic Characterization of Pathogenic and Non-Pathogenic Strains of //Xanthomonas arboricola// Reveals Insights into the Infection Process of Bacterial Spot Disease of Stone FruitsPLoS One 11(8)e0161977. DOI: [[https://doi.org/10.1371/journal.pone.0161977|10.1371/journal.pone.0161977]].+Garita-Cambronero J, Palacio-Bielsa A, Cubero J (2018). //Xanthomonas arboricola// pv. //pruni//, causal agent of bacterial spot of stone fruits and almond: its genomic and phenotypic characteristics in the //Xarboricola// species context. Mol. Plant Pathol. 192053-2065. DOI: [[https://doi.org/10.1111/mpp.12679|10.1111/mpp.12679]]
  
-Garita-Cambronero J (2016b). Doctoral Thesis. Genómica comparativa de cepas de //Xanthomonas arborícola//  asociadas a //Prunus ssp//. Caracterización de los procesos de infección de la mancha bacteriana de frutales de hueso y almendroUniversidad Politécnica de Madrid.+Garita-Cambronero J, Palacio-Bielsa A, López MM, Cubero J (2016). Comparative genomic and phenotypic characterization of pathogenic and non-pathogenic strains of //Xanthomonas arboricola// reveals insights into the infection process of bacterial spot disease of stone fruits. PLoS One 11: e0161977. DOI: [[https://doi.org/10.1371/journal.pone.0161977|10.1371/journal.pone.0161977]]
  
-Garita-Cambronero J, Palacio-Bielsa A, Cubero J (2018). //Xanthomonas arboricola// pv. //pruni//, causal agent of bacterial spot of stone fruits and almond: its genomic and phenotypic characteristics in the //X. arboricola// species contextMol Plant Pathol 19(9)2053-2065. DOI: [[https://doi.org/10.1111/mpp.12679|10.1111/mpp.12679]].+Garita-Cambronero J, Sena-Vélez M, Ferragud E, Sabuquillo P, Redondo C, Cubero J (2019). //Xanthomonas citri// subsp. //citri// and //Xanthomonas arboricola// pv//pruni//: Comparative analysis of two pathogens producing similar symptoms in different host plantsPLoS One 14e0219797. DOI: [[https://doi.org/10.1371/journal.pone.0219797|10.1371/journal.pone.0219797]]
  
-Garita-Cambronero JSena-Vélez MFerragud ESabuquillo PRedondo CCubero J (2019). //Xanthomonas citri// subsp. //citri// and //Xanthomonas arboricola// pv. //pruni//: Comparative analysis of two pathogens producing similar symptoms in different host plantsPLoS One. 2019 Jul 18;14(7)e0219797. DOI: [[https://doi.org/10.1371/journal.pone.0219797|10.1371/journal.pone.0219797]].+Jalan NKumar D, Andrade MO, Yu F, Jones JBGraham JHWhite FFSetubal JCWang N (2013). Comparative genomic and transcriptome analyses of pathotypes of //Xanthomonas citri// subsp. //citri// provide insights into mechanisms of bacterial virulence and host rangeBMC Genomics 14: 551. DOI: [[https://doi.org/10.1186/1471-2164-14-551|10.1186/1471-2164-14-551]]
  
-Jalan N, Kumar DAndrade MOYu F, Jones JB, Graham JH, White FF, Setubal JC, Wang N (2013). Comparative genomic and transcriptome analyses of pathotypes of //Xanthomonas citri// subsp. //citri// provide insights into mechanisms of bacterial virulence and host rangeBMC Genomics 14551. DOI: [[https://doi.org/10.1186/1471-2164-14-551|10.1186/1471-2164-14-551]].+Jibrin MO, Potnis N, Timilsina SMinsavage GV, Vallad GERoberts PD, Jones JB, Goss EM (2018). Genomic inference of recombination-mediated evolution in //Xanthomonas euvesicatoria// and //X. perforans//. Appl. Environ. Microbiol. 84e00136-18. DOI: [[https://doi.org/10.1128/AEM.00136-18|10.1128/AEM.00136-18]]
  
-Jibrin MOPotnis N, Timilsina S, Minsavage GV, Vallad GE, Roberts PD, Jones JB, Goss EM (2018). Genomic Inference of Recombination-Mediated Evolution in //Xanthomonas euvesicatoria// and //Xperforans//Appl Environ Microbiol 84(13)piie00136-18DOI: [[https://doi.org/10.1128/AEM.00136-18|10.1128/AEM.00136-18]].+Mukaihara TTamura N, Iwabuchi M (2010). Genome-wide identification of a large repertoire of //Ralstonia solanacearum// type III effector proteins by a new functional screenMolPlant Microbe Interact23251-262. [[https://doi.org/10.1094/MPMI-23-3-0251|10.1094/MPMI-23-3-0251]]
  
-Mukaihara T, Tamura N, Iwabuchi M (2010). Genome-wide identification of a large repertoire of //Ralstonia solanacearum// type III effector proteins by a new functional screenMol Plant Microbe Interact. 23(3)251-62. [[https://doi.org/10.1094/MPMI-23-3-0251|10.1094/MPMI-23-3-0251]].+Potnis N, Krasileva K, Chow V, Almeida NF, Patil PB, Ryan RP, Sharlach M, Behlau F, Dow JM, Momol M, White FF, Preston JF, Vinatzer BA, Koebnik R, Setubal JC, Norman DJ, Staskawicz BJ, Jones JB (2011). Comparative genomics reveals diversity among xanthomonads infecting tomato and pepperBMC Genomics 12146DOI: [[https://doi.org/10.1186/1471-2164-12-146|10.1186/1471-2164-12-146]]
  
-Potnis N, Krasileva KChow VAlmeida NFPatil PBRyan RPSharlach MBehlau FDow JMMomol M, White FF, Preston JFVinatzer BAKoebnik R, Setubal JC, Norman DJ, Staskawicz BJ, Jones JB (2011). Comparative genomics reveals diversity among xanthomonads infecting tomato and pepperBMC Genomics 12146. DOI: [[https://doi.org/10.1186/1471-2164-12-146|10.1186/1471-2164-12-146]].+Schwartz AR, Potnis N, Timilsina SWilson MPatané JMartins J JrMinsavage GVDahlbeck DAkhunova AAlmeida NVallad GE, Barak JD, White FF, Miller SARitchie DGoss E, Bart RS, Setubal JC, Jones JB, Staskawicz BJ (2015). Phylogenomics of //Xanthomonas// field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificityFront. Microbiol. 6535. DOI: [[https://doi.org/10.3389/fmicb.2015.00535|10.3389/fmicb.2015.00535]]
  
-Schwartz ARPotnis NTimilsina S, Wilson M, Patané J, Martins J Jr, Minsavage GV, Dahlbeck D, Akhunova A, Almeida N, Vallad GE, Barak JD, White FF, Miller SA, Ritchie D, Goss E, Bart RS, Setubal JC, Jones JBStaskawicz BJ (2015). Phylogenomics of //Xanthomonas// field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificityFront Microbiol6535. DOI: [[https://doi.org/10.3389/fmicb.2015.00535|10.3389/fmicb.2015.00535]].+Vancheva TLefeuvre PBogatzevska N, Moncheva PKoebnik R (2015). Draf genome sequences of two //Xanthomonas euvesicatoria// strains from the Balkan PeninsulaGenome Announc3e01528-14. DOI: [[https://mra.asm.org/content/3/1/e01528-14|10.1128/genomeA.01528-14]]
  
bacteria/t3e/xopaq.1587074152.txt.gz · Last modified: 2020/04/16 23:55 by 127.0.0.1