User Tools

Site Tools


bacteria:t3e:xopaq

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopaq [2020/06/22 09:44]
saulburdman [Biological function]
bacteria:t3e:xopaq [2020/07/03 09:57] (current)
rkoebnik
Line 1: Line 1:
 ====== XopAQ ====== ====== XopAQ ======
  
-Author: Jose Gadea\\ +Author: [[https://www.researchgate.net/profile/Jose_Gadea|Jose Gadea]]\\ 
-Internal reviewer: Saul Burdman Expert reviewer: FIXME+Internal reviewer: [[https://www.researchgate.net/profile/Saul_Burdman|Saul Burdman]]\\ 
 +Expert reviewer: FIXME
  
-Class:XopAQ\\ +Class: XopAQ\\ 
-Family:XopAQ\\+Family: XopAQ\\
 Prototype: XopAQ (//X. gardneri// (Xg); strain 101 = ATCC 19865)\\ Prototype: XopAQ (//X. gardneri// (Xg); strain 101 = ATCC 19865)\\
 GenBank ID: [[https://www.ncbi.nlm.nih.gov/protein/|EGD19295.1]] (95 aa)\\ GenBank ID: [[https://www.ncbi.nlm.nih.gov/protein/|EGD19295.1]] (95 aa)\\
Line 20: Line 21:
 === Regulation === === Regulation ===
  
-XopAQ is up-regulated when //X.citri// pv. //citri// 306 and //X.citri// pv. //citri// Aw12879 (restricted to Mexican lime) were grown in XVM2 (a medium that is known to induce expression of //hrp// genes and several effector genes in //Xanthomonas //sp.), as compared with nutrient broth (NB). However, no differential expression was observed for this gene among these two strains (Jalan //et al//., 2013). In //X. arboricola //the //xopAQ //gene has a putative plant-inducible promoter box (PIP-BOX) sequence, 67 bp upstream of the TATA box (Garita-Cambronero, 2016b).+XopAQ is up-regulated when //X.citri// pv. //citri// 306 and //X.citri// pv. //citri// Aw12879 (restricted to Mexican lime) were grown in XVM2 (a medium that is known to induce expression of //hrp// genes and several effector genes in //Xanthomonas //sp.), as compared with nutrient broth (NB). However, no differential expression was observed for this gene among these two strains (Jalan //et al//., 2013). In //X. arboricola //the //xopAQ //gene has a putative plant-inducible promoter box (PIP-BOX) sequence, 67 bp upstream of the TATA box (Garita-Cambronero, 2016).
 === Phenotypes === === Phenotypes ===
  
Line 39: Line 40:
 === In xanthomonads === === In xanthomonads ===
  
-Yes. Widely present in the most agressive citrus canker-causing //X.citri// A strains but also in the AW strain (narrow host range) (Escalon //et al//., 2013; Garita-Cambronero //et al//., 2019), and also in the milder //X. fuscans// B strain, but not in the //X. fuscans// C strain (restricted to //C. aurantifoli//Dalio //et al//., 2017). Present in //Xanthomonas gardneri// but not in some strains of //X. perforans// nor //X. euvesicatoria// strains affecting pepper and tomato (Potnis //et al//., 2011; Schwartz //et al//., 2015; Jibrin //et al//., 2018). Two paralogs of XopAQ present in strains 66b and LMG 918 of //X. euvesicatoria//, but not present in other LMG strains, 83b, 85-10, or //X. euvesicatoria// pv. //rosa// (Barak //et al//., 2016). Present in pathogenic (but not in non-pathogenic//X. arboricola// pv. //pruni// (Garita-Cambronero //et al//., 2016a, 2019), but not in the related //X. juglandis// or //X. corylina// (Garita-Cambronero //et al//., 2018). Also present in //X. citri// pv. //viticola// (Schwartz //et al//., 2015) and other //X. citri// pathovars (blastp analysis). //X. phaseolis// //and X. populi//, among others, present a protein with moderate homology in a blastp analysis.+Yes. The effector is widely present in the most agressive citrus canker-causing //X.citri// A strains but also in the AW strain (narrow host range) (Escalon //et al//., 2013; Garita-Cambronero //et al//., 2019), and also in the milder //X. fuscans// B strain, but not in the //X. fuscans// C strain, whic is restricted to //C. aurantifoli// (Dalio //et al//., 2017). Present in //Xanthomonas gardneri// but not in some strains of //X. perforans// nor //X. euvesicatoria// strains affecting pepper and tomato (Potnis //et al//., 2011; Schwartz //et al//., 2015; Vancheva //et al//., 2015; Jibrin //et al//., 2018). Two paralogs of XopAQ are present in strains 66b and LMG 918 of //X. euvesicatoria//, but not present in other LMG strains, 83b, 85-10, or //X. euvesicatoria// pv. //rosa// (Barak //et al//., 2016). Present in pathogenic but not in non-pathogenic// X. arboricola// pv. //pruni// (Garita-Cambronero //et al//., 2016, 2019). Absent in the related //X. juglandis// or //X. corylina// (Garita-Cambronero //et al//., 2018). Also present in //X. citri// pv. //viticola// (Schwartz //et al//., 2015) and other //X. citri// pathovars (blastp analysis). //X. phaseolis// //and X. populi//, among others, posess putative genes encoding proteins with moderate homology to XopAQ based on Blastp analysis.
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
Line 45: Line 46:
 ===== References ===== ===== References =====
  
-Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016). Whole-genome sequences of //Xanthomonas euvesicatoria// strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Front Plant Sci. 7: 1805. DOI: [[https://doi.org/10.3389/fpls.2016.01805|10.3389/fpls.2016.01805]].+Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016). Whole-genome sequences of //Xanthomonas euvesicatoria// strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Front Plant Sci. 7: 1805. DOI: [[https://doi.org/10.3389/fpls.2016.01805|10.3389/fpls.2016.01805]]
  
-Dalio RJD, Magalhães DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RR, Picchi SC, Martins PMM, Santos PJC, Maximo HJ, Pacheco IS, De Souza AA, Machado MA (2017). PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. Ann. Bot. 119(5): 749-774. DOI: [[https://doi.org/10.1093/aob/mcw238|10.1093/aob/mcw238]].+Dalio RJD, Magalhães DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RR, Picchi SC, Martins PMM, Santos PJC, Maximo HJ, Pacheco IS, De Souza AA, Machado MA (2017). PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. Ann. Bot. 119: 749-774. DOI: [[https://doi.org/10.1093/aob/mcw238|10.1093/aob/mcw238]]
  
-Escalon A, Javegny S, Vernière C, Noël LD, Vital K, Poussier S, Hajri A, Boureau T, Pruvost O, Arlat M, Gagnevin L (2013). Variations in type III effector repertoires, pathological phenotypes and host range of //Xanthomonas citri// pv. //citri// pathotypes. Mol. Plant. Pathol. 14(5): 483-96. DOI: [[https://doi.org/10.1111/mpp.12019|10.1111/mpp.12019]].+Escalon A, Javegny S, Vernière C, Noël LD, Vital K, Poussier S, Hajri A, Boureau T, Pruvost O, Arlat M, Gagnevin L (2013). Variations in type III effector repertoires, pathological phenotypes and host range of //Xanthomonas citri// pv. //citri// pathotypes. Mol. Plant. Pathol. 14: 483-96. DOI: [[https://doi.org/10.1111/mpp.12019|10.1111/mpp.12019]]
  
-Ferreira MASV, Bonneau S, Briand M, Cesbron S, Portier P, Darrasse A, Gama MAS, Barbosa MAG, Mariano RLR, Souza EB, Jacques MA (2009). //Xanthomonas citri// pv. //viticola// affecting grapevine in Brazil: Emergence of a successful monomorphic pathogen. Front. Plant Sci. 10: 489. DOI: [[https://doi.org/10.3389/fpls.2019.00489|10.3389/fpls.2019.00489]].+Ferreira MASV, Bonneau S, Briand M, Cesbron S, Portier P, Darrasse A, Gama MAS, Barbosa MAG, Mariano RLR, Souza EB, Jacques MA (2009). //Xanthomonas citri// pv. //viticola// affecting grapevine in Brazil: Emergence of a successful monomorphic pathogen. Front. Plant Sci. 10: 489. DOI: [[https://doi.org/10.3389/fpls.2019.00489|10.3389/fpls.2019.00489]]
  
-Garita-Cambronero J, Palacio-Bielsa A, López MM, Cubero J (2016a). Comparative genomic and phenotypic characterization of pathogenic and non-pathogenic strains of //Xanthomonas arboricola// reveals insights into the infection process of bacterial spot disease of stone fruitsPLoS One 11(8): e0161977DOI: [[https://doi.org/10.1371/journal.pone.0161977|10.1371/journal.pone.0161977]].+Garita-Cambronero J (2016). Genómica comparativa de cepas de //Xanthomonas arborícola// asociadas a //Prunus ssp//. Caracterización de los procesos de infección de la mancha bacteriana de frutales de hueso y almendro. Doctoral Thesis, Universidad Politécnica de Madrid, SpainPDF: [[http://oa.upm.es/45480/|oa.upm.es/45480/]]
  
-Garita-Cambronero J (2016b). Doctoral Thesis. Genómica comparativa de cepas de //Xanthomonas arborícola// asociadas a //Prunus ssp//. Caracterización de los procesos de infección de la mancha bacteriana de frutales de hueso y almendroUniversidad Politécnica de Madrid.+Garita-Cambronero J, Palacio-Bielsa A, Cubero J (2018). //Xanthomonas arboricola// pv. //pruni//, causal agent of bacterial spot of stone fruits and almond: its genomic and phenotypic characteristics in the //Xarboricola// species contextMol. Plant Pathol. 19: 2053-2065. DOI: [[https://doi.org/10.1111/mpp.12679|10.1111/mpp.12679]]
  
-Garita-Cambronero J, Palacio-Bielsa A, Cubero J (2018). //Xanthomonas arboricola// pv. //pruni//, causal agent of bacterial spot of stone fruits and almond: its genomic and phenotypic characteristics in the //Xarboricola// species context. Mol. Plant Pathol. 19(9)2053-2065. DOI: [[https://doi.org/10.1111/mpp.12679|10.1111/mpp.12679]].+Garita-Cambronero J, Palacio-Bielsa A, López MM, Cubero J (2016). Comparative genomic and phenotypic characterization of pathogenic and non-pathogenic strains of //Xanthomonas arboricola// reveals insights into the infection process of bacterial spot disease of stone fruits. PLoS One 11e0161977. DOI: [[https://doi.org/10.1371/journal.pone.0161977|10.1371/journal.pone.0161977]]
  
-Garita-Cambronero J, Sena-Vélez M, Ferragud E, Sabuquillo P, Redondo C, Cubero J (2019). //Xanthomonas citri// subsp. //citri// and //Xanthomonas arboricola// pv. //pruni//: Comparative analysis of two pathogens producing similar symptoms in different host plants. PLoS One 14(7): e0219797. DOI: [[https://doi.org/10.1371/journal.pone.0219797|10.1371/journal.pone.0219797]].+Garita-Cambronero J, Sena-Vélez M, Ferragud E, Sabuquillo P, Redondo C, Cubero J (2019). //Xanthomonas citri// subsp. //citri// and //Xanthomonas arboricola// pv. //pruni//: Comparative analysis of two pathogens producing similar symptoms in different host plants. PLoS One 14: e0219797. DOI: [[https://doi.org/10.1371/journal.pone.0219797|10.1371/journal.pone.0219797]]
  
-Jalan N, Kumar D, Andrade MO, Yu F, Jones JB, Graham JH, White FF, Setubal JC, Wang N (2013). Comparative genomic and transcriptome analyses of pathotypes of //Xanthomonas citri// subsp. //citri// provide insights into mechanisms of bacterial virulence and host range. BMC Genomics 14: 551. DOI: [[https://doi.org/10.1186/1471-2164-14-551|10.1186/1471-2164-14-551]].+Jalan N, Kumar D, Andrade MO, Yu F, Jones JB, Graham JH, White FF, Setubal JC, Wang N (2013). Comparative genomic and transcriptome analyses of pathotypes of //Xanthomonas citri// subsp. //citri// provide insights into mechanisms of bacterial virulence and host range. BMC Genomics 14: 551. DOI: [[https://doi.org/10.1186/1471-2164-14-551|10.1186/1471-2164-14-551]]
  
-Jibrin MO, Potnis N, Timilsina S, Minsavage GV, Vallad GE, Roberts PD, Jones JB, Goss EM (2018). Genomic inference of recombination-mediated evolution in //Xanthomonas euvesicatoria// and //X. perforans//. Appl. Environ. Microbiol. 84(13): e00136-18. DOI: [[https://doi.org/10.1128/AEM.00136-18|10.1128/AEM.00136-18]].+Jibrin MO, Potnis N, Timilsina S, Minsavage GV, Vallad GE, Roberts PD, Jones JB, Goss EM (2018). Genomic inference of recombination-mediated evolution in //Xanthomonas euvesicatoria// and //X. perforans//. Appl. Environ. Microbiol. 84: e00136-18. DOI: [[https://doi.org/10.1128/AEM.00136-18|10.1128/AEM.00136-18]]
  
-Mukaihara T, Tamura N, Iwabuchi M (2010). Genome-wide identification of a large repertoire of //Ralstonia solanacearum// type III effector proteins by a new functional screen. Mol. Plant Microbe Interact. 23(3): 251-62. [[https://doi.org/10.1094/MPMI-23-3-0251|10.1094/MPMI-23-3-0251]].+Mukaihara T, Tamura N, Iwabuchi M (2010). Genome-wide identification of a large repertoire of //Ralstonia solanacearum// type III effector proteins by a new functional screen. Mol. Plant Microbe Interact. 23: 251-262. [[https://doi.org/10.1094/MPMI-23-3-0251|10.1094/MPMI-23-3-0251]]
  
-Potnis N, Krasileva K, Chow V, Almeida NF, Patil PB, Ryan RP, Sharlach M, Behlau F, Dow JM, Momol M, White FF, Preston JF, Vinatzer BA, Koebnik R, Setubal JC, Norman DJ, Staskawicz BJ, Jones JB (2011). Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genomics 12: 146. DOI: [[https://doi.org/10.1186/1471-2164-12-146|10.1186/1471-2164-12-146]].+Potnis N, Krasileva K, Chow V, Almeida NF, Patil PB, Ryan RP, Sharlach M, Behlau F, Dow JM, Momol M, White FF, Preston JF, Vinatzer BA, Koebnik R, Setubal JC, Norman DJ, Staskawicz BJ, Jones JB (2011). Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genomics 12: 146. DOI: [[https://doi.org/10.1186/1471-2164-12-146|10.1186/1471-2164-12-146]]
  
-Schwartz AR, Potnis N, Timilsina S, Wilson M, Patané J, Martins J Jr, Minsavage GV, Dahlbeck D, Akhunova A, Almeida N, Vallad GE, Barak JD, White FF, Miller SA, Ritchie D, Goss E, Bart RS, Setubal JC, Jones JB, Staskawicz BJ (2015). Phylogenomics of //Xanthomonas// field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Front. Microbiol. 6: 535. DOI: [[https://doi.org/10.3389/fmicb.2015.00535|10.3389/fmicb.2015.00535]].+Schwartz AR, Potnis N, Timilsina S, Wilson M, Patané J, Martins J Jr, Minsavage GV, Dahlbeck D, Akhunova A, Almeida N, Vallad GE, Barak JD, White FF, Miller SA, Ritchie D, Goss E, Bart RS, Setubal JC, Jones JB, Staskawicz BJ (2015). Phylogenomics of //Xanthomonas// field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Front. Microbiol. 6: 535. DOI: [[https://doi.org/10.3389/fmicb.2015.00535|10.3389/fmicb.2015.00535]]
  
-Vancheva T, Lefeuvre P, Bogatzevska N, Moncheva P, Koebnik R (2015). Draf genome sequences of two Xanthomonas euvesicatoria strains from the Balkan Peninsula. Genome Announc. 3(1): e01528-14. DOI: [[https://mra.asm.org/content/3/1/e01528-14|10.1128/genomeA.01528-14]].+Vancheva T, Lefeuvre P, Bogatzevska N, Moncheva P, Koebnik R (2015). Draf genome sequences of two //Xanthomonas euvesicatoria// strains from the Balkan Peninsula. Genome Announc. 3: e01528-14. DOI: [[https://mra.asm.org/content/3/1/e01528-14|10.1128/genomeA.01528-14]]
  
bacteria/t3e/xopaq.1592811847.txt.gz · Last modified: 2020/06/22 09:44 by saulburdman