User Tools

Site Tools


bacteria:t3e:xopc

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopc [2022/08/12 18:03]
rkoebnik [References]
bacteria:t3e:xopc [2022/08/12 18:19] (current)
rkoebnik [References]
Line 74: Line 74:
 XopC1: //Ralstonia solanacearum// (RipC2), //Trinickia caryophylli// (//Paraburkholderia caryophylli//), //Xylophilus ampelinus// (BLASTP and TBLASTN performed in June 2020). XopC1: //Ralstonia solanacearum// (RipC2), //Trinickia caryophylli// (//Paraburkholderia caryophylli//), //Xylophilus ampelinus// (BLASTP and TBLASTN performed in June 2020).
  
-XopC2: //Acidovorax// ssp., //Pseudomonas cissicola//, //Ralstonia solanacearum// (RipC1) (BLASTP and TBLASTN performed in June 2020).+XopC2: //Acidovorax// ssp., //Pseudomonas cissicola// [a pathovar of //Xanthomonas citri//], //Ralstonia solanacearum// (RipC1) (BLASTP and TBLASTN performed in June 2020). 
 ===== References ===== ===== References =====
  
Line 84: Line 85:
  
 Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae// pv. //oryzae// requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS Microbiol. Lett. 363: fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]] Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae// pv. //oryzae// requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS Microbiol. Lett. 363: fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]]
- <font 14px/inherit;;inherit;;inherit>Mondal KK, Soni M, Verma G, Kulshreshtha A,</font> Mrutyunjaya and Rishikesh Kumar ( 2020)// Xanthomonas axonopodis // pv. punicae depends on multiple non-TAL (Xop) T3SS effectors for its coveted growth inside the pomegranate plant through repressing the immune responses during bacterial blight development. Microbiol Res. DOI: [[https://reader.elsevier.com/reader/sd/pii/S0944501320304286?token=4EA12A9175B50124E0DFCA6A23A51A29B62D824FB74B3483A027182259D36A284151991CC4F2BBB2AAACA43B96C9783A|10.1016/j.micres.2020.126560]]+ 
 +Mondal KK, Soni M, Verma G, Kulshreshtha A, Mrutyunjaya S, Kumar ( 2020)//Xanthomonas axonopodis// pv. //punicae// depends on multiple non-TAL (Xop) T3SS effectors for its coveted growth inside the pomegranate plant through repressing the immune responses during bacterial blight development. Microbiol Res. 240: 126560 DOI: [[https://doi.org/10.1016/j.micres.2020.126560|10.1016/j.micres.2020.126560]]
  
 Noël L, Thieme F, Gäbler J, Büttner D, Bonas U (2003). XopC and XopJ, two novel type III effector proteins from //Xanthomonas campestris// pv. vesicatoria. J. Bacteriol. 185: 7092-7102. DOI: [[https://doi.org/10.1128/jb.185.24.7092-7102.2003|10.1128/jb.185.24.7092-7102.2003]] Noël L, Thieme F, Gäbler J, Büttner D, Bonas U (2003). XopC and XopJ, two novel type III effector proteins from //Xanthomonas campestris// pv. vesicatoria. J. Bacteriol. 185: 7092-7102. DOI: [[https://doi.org/10.1128/jb.185.24.7092-7102.2003|10.1128/jb.185.24.7092-7102.2003]]
  
-[[https://doi.org/10.1046/j.1365-2958.2001.02567.x|Noël L, Thieme F, Nennstiel D, Bonas U (2001). cDNA-AFLP analysis unravels a genome-wide //hrpG//-regulon in the plant pathogen //Xanthomonas campestris// pv. //vesicatoria//. Mol. Microbiol. 41: 1271-1281. DOI: 10.1046/j.1365-2958.2001.02567.x]]+Noël L, Thieme F, Nennstiel D, Bonas U (2001). cDNA-AFLP analysis unravels a genome-wide //hrpG//-regulon in the plant pathogen //Xanthomonas campestris// pv. //vesicatoria//. Mol. Microbiol. 41: 1271-1281. DOI: [[https://doi.org/10.1046/j.1365-2958.2001.02567.x|10.1046/j.1365-2958.2001.02567.x]]
  
 Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas// infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]] Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas// infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]]
Line 94: Line 96:
 Salomon D, Dar D, Sreeramulu S, Sessa G (2011). Expression of //Xanthomonas campestris// pv. //vesicatoria// type III effectors in yeast affects cell growth and viability. Mol. Plant-Microbe Interact. 24: 305-314. DOI: [[https://doi.org/10.1094/MPMI-09-10-0196|10.1094/MPMI-09-10-0196]] Salomon D, Dar D, Sreeramulu S, Sessa G (2011). Expression of //Xanthomonas campestris// pv. //vesicatoria// type III effectors in yeast affects cell growth and viability. Mol. Plant-Microbe Interact. 24: 305-314. DOI: [[https://doi.org/10.1094/MPMI-09-10-0196|10.1094/MPMI-09-10-0196]]
  
-Szurek B, Rossier O, Hause G, Bonas U (2002). Type III-dependent translocation of the //Xanthomonas// AvrBs3 protein into the plant cell. Mol. Microbiol. 46: 13-23. DOI: [[https://doi.org/10.1046/j.1365-2958.2002.03139.x|10.1016/j.jplph.2005.11.011]]+Szurek B, Rossier O, Hause G, Bonas U (2002). Type III-dependent translocation of the //Xanthomonas// AvrBs3 protein into the plant cell. Mol. Microbiol. 46: 13-23. DOI: [[https://doi.org/10.1046/j.1365-2958.2002.03139.x|10.1046/j.1365-2958.2002.03139.x]]
  
 Wang S, Li S, Wang J, Li Q, Xin XF, Zhou S, Wang Y, Li D, Xu J, Luo ZQ, He SY, Sun W (2021). A bacterial kinase phosphorylates OSK1 to suppress stomatal immunity in rice. Nat. Commun.12: 5479. doi: [[https://doi.org/10.1038/s41467-021-25748-4|10.1038/s41467-021-25748-4]] Wang S, Li S, Wang J, Li Q, Xin XF, Zhou S, Wang Y, Li D, Xu J, Luo ZQ, He SY, Sun W (2021). A bacterial kinase phosphorylates OSK1 to suppress stomatal immunity in rice. Nat. Commun.12: 5479. doi: [[https://doi.org/10.1038/s41467-021-25748-4|10.1038/s41467-021-25748-4]]
  
bacteria/t3e/xopc.1660320182.txt.gz · Last modified: 2022/08/12 18:03 by rkoebnik