User Tools

Site Tools


bacteria:t3e:xopd

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
bacteria:t3e:xopd [2020/07/03 09:37]
rkoebnik
bacteria:t3e:xopd [2020/07/08 18:25]
rkoebnik
Line 2: Line 2:
  
 Author: [[https://www.researchgate.net/profile/Monika_Kaluzna|Monika Kałużna]]\\ Author: [[https://www.researchgate.net/profile/Monika_Kaluzna|Monika Kałużna]]\\
-Internal reviewer: Alice Boulanger\\+Internal reviewer: [[https://www.researchgate.net/profile/Alice_Castaing|Alice Boulanger]]\\
 Expert reviewer: FIXME Expert reviewer: FIXME
  
 Class: XopD (Xanthomonas outer protein D)\\ Class: XopD (Xanthomonas outer protein D)\\
-Family: family C48 (Rawlings //et al//., 2006)\\ +Family: XopD\\ 
-Prototype: XopD (//Xanthomonas// outer protein D ; //Xanthomonas euvesicatoria// pv. //euvesicatoria// aka //Xanthomonas campestris// pv. //vescicatoria//; strain 85-10)\\+Prototype: XopD (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\
 RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/CAJ22068|CAJ22068]] (545 aa); [[https://www.ncbi.nlm.nih.gov/protein/DAA34040|DAA34040]] (760 aa) new annotation\\ RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/CAJ22068|CAJ22068]] (545 aa); [[https://www.ncbi.nlm.nih.gov/protein/DAA34040|DAA34040]] (760 aa) new annotation\\
-3D structure : [[https://www.rcsb.org/structure/5JP3|5JP3]], Crystal structure available in (Chosed //et al//., 2007)[[http://www.rcsb.org/pdb/explore/jmol.do?structureId=2OIV&edMap=PO4|PDB-2OIV]] +3D structure: [[https://www.rcsb.org/structure/2OIV|2OIV]], [[https://www.rcsb.org/structure/2OIX|2OIX]] (Chosed //et al//., 2007)[[https://www.rcsb.org/structure/5JP1|5JP1]], [[https://www.rcsb.org/structure/5JP3|5JP3]] ( Pruneda //et al.//, 2016 )
 ===== Biological function ===== ===== Biological function =====
  
Line 18: Line 17:
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-XopD is a desumoylating enzyme with strict specificity for its plant small ubiquitin-like modifier (SUMO) substrates (Chosed //et al//., 2007). C-terminus of XopD (amino acids 322–520) shares primary sequence similarity with the C48 family of cysteine peptidases. In the XopD polypeptide, amino acid positions 309–481 are most homologous to the C-terminal catalytic domain of the Ulp1 ubiquitin-like protease protein family, which is highly conserved (Hotson //et al//., 2003; Li & Hochstrasser, 1999). Unlike yeast Ulp1 which process a variety of SUMO substrates, XopD exhibits rigid SUMO substrate specificity, it will process only certain plant SUMOs, //i.e.// T-SUMO, //At//SUMO-1, and //At//SUMO-2 (Chosed //et al//., 2007). However, another study has shoxn that XopD shows a mixed activity, being a (tomato)-SUMO and Ubiquitin isopeptidase. The capacity to efficiently recognize both substrates suggest a large evolutionary pressure to become a multifunctionnal protease (Pruneda //et al//., 2016).+XopD is a desumoylating enzyme with strict specificity for its plant small ubiquitin-like modifier (SUMO) substrates (Chosed //et al//., 2007). C-terminus of XopD (amino acids 322–520) shares primary sequence similarity with the C48 family of cysteine peptidases (Rawlings //et al//., 2006). In the XopD polypeptide, amino acid positions 309–481 are most homologous to the C-terminal catalytic domain of the Ulp1 ubiquitin-like protease protein family, which is highly conserved (Hotson //et al//., 2003; Li & Hochstrasser, 1999). Unlike yeast Ulp1 which process a variety of SUMO substrates, XopD exhibits rigid SUMO substrate specificity, it will process only certain plant SUMOs, //i.e.// T-SUMO, //At//SUMO-1, and //At//SUMO-2 (Chosed //et al//., 2007). However, another study has shoxn that XopD shows a mixed activity, being a (tomato)-SUMO and Ubiquitin isopeptidase. The capacity to efficiently recognize both substrates suggest a large evolutionary pressure to become a multifunctionnal protease (Pruneda //et al//., 2016).
  
 Besides C-terminal SUMO protease domain (Chosed //et al//., 2007; Hotson //et al//., 2003), XopD has a unique N-terminal region with a host range determining non-specific DNA-binding domain (DBD) (Kim //et al//., 2011) and a central domain with two internal ERF-associated amphiphilic repression (EAR) motifs (L/FDLNL/FXP)(Ohta //et al//., 2001), which were found in plant repressors that regulate stress induced transcription. XopD might repress host transcription during //Xcv// infection (Ohta //et al//., 2001; Kim //et al//., 2011). Besides C-terminal SUMO protease domain (Chosed //et al//., 2007; Hotson //et al//., 2003), XopD has a unique N-terminal region with a host range determining non-specific DNA-binding domain (DBD) (Kim //et al//., 2011) and a central domain with two internal ERF-associated amphiphilic repression (EAR) motifs (L/FDLNL/FXP)(Ohta //et al//., 2001), which were found in plant repressors that regulate stress induced transcription. XopD might repress host transcription during //Xcv// infection (Ohta //et al//., 2001; Kim //et al//., 2011).
Line 77: Line 76:
 Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001). Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13: 1959-1968. DOI: [[https://doi.org/10.1105/tpc.010127|10.1105/tpc.010127]] Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001). Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13: 1959-1968. DOI: [[https://doi.org/10.1105/tpc.010127|10.1105/tpc.010127]]
  
-Pruneda JN, Durkin CH, Geurink PP, Ovaa H, Santhanam B, Holden DW, Komander D(2016). The molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases. Mol. Cell 63: 261-276. DOI: [[https://doi.org/10.1016/j.molcel.2016.06.015|10.1016/j.molcel.2016.06.015]]+Pruneda JN, Durkin CH, Geurink PP, Ovaa H, Santhanam B, Holden DW, Komander D (2016). The molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases. Mol. Cell 63: 261-276. DOI: [[https://doi.org/10.1016/j.molcel.2016.06.015|10.1016/j.molcel.2016.06.015]]
  
 Rawlings ND, Morton FR, Barrett AJ (2006). MEROPS: the peptidase database. Nucl. Acids Res. 34: D270-D272. DOI: [[https://doi.org/10.1093/nar/gkj089|10.1093/nar/gkj089]] Rawlings ND, Morton FR, Barrett AJ (2006). MEROPS: the peptidase database. Nucl. Acids Res. 34: D270-D272. DOI: [[https://doi.org/10.1093/nar/gkj089|10.1093/nar/gkj089]]
  
 Tan CM, Li MY, Yang PY, Chang SH, Ho YP, Lin H, Deng WL, Yang JY (2015). //Arabidopsis// HFR1 is a potential nuclear substrate regulated by the //Xanthomonas// type III effector XopD<sub>//Xcc//8004</sub>. PLoS One 10: e0117067. DOI: [[http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117067|10.1371/journal.pone.0117067]] Tan CM, Li MY, Yang PY, Chang SH, Ho YP, Lin H, Deng WL, Yang JY (2015). //Arabidopsis// HFR1 is a potential nuclear substrate regulated by the //Xanthomonas// type III effector XopD<sub>//Xcc//8004</sub>. PLoS One 10: e0117067. DOI: [[http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117067|10.1371/journal.pone.0117067]]
 +
 +===== Further reading =====
 +
 +Canonne J, Marino D, Noël LD, Arechaga I, Pichereaux C, Rossignol M, Roby D, Rivas S (2010). Detection and functional characterization of a 215 amino acid N-terminal extension in the //Xanthomonas// type III effector XopD. PLoS One 5: e15773. DOI: [[https://doi.org/10.1371/journal.pone.0015773|10.1371/journal.pone.0015773]]. **Retraction in: PLoS One (2018) 13: e0190773.** DOI: [[https://doi.org/10.1371/journal.pone.0190773|10.1371/journal.pone.0190773 ]]
 +
 +Raffaele S, Rivas S (2013). Regulate and be regulated: integration of defense and other signals by the AtMYB30 transcription factor. Front. Plant Sci. 4: 98. DOI: [[https://doi.org/10.3389/fpls.2013.00098|10.3389/fpls.2013.00098]]
 +
 +Tan L, Rong W, Luo H, Chen Y, He C (2014). The //Xanthomonas campestris// effector protein XopD<sub>Xcc8004</sub> triggers plant disease tolerance by targeting DELLA proteins. New Phytol. 204: 595-608. DOI: [[https://doi.org/10.1111/nph.12918|10.1111/nph.12918]]
  
bacteria/t3e/xopd.txt · Last modified: 2020/07/08 18:27 by rkoebnik