User Tools

Site Tools


bacteria:t3e:xoph

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xoph [2020/07/08 18:45]
rkoebnik [XopH]
bacteria:t3e:xoph [2020/10/28 12:20] (current)
rkoebnik [XopH]
Line 2: Line 2:
  
 Author: Isabel Rodrigues\\ Author: Isabel Rodrigues\\
-Internal reviewer: FIXME \\+Internal reviewer: [[https://www.researchgate.net/profile/Camila_Fernandes2|Camila Fernandes]]\\
 Expert reviewer: FIXME Expert reviewer: FIXME
  
Line 9: Line 9:
 Prototype: XopH (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex// Xanthomonas campestris// pv. //vesicatoria)// \\ Prototype: XopH (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex// Xanthomonas campestris// pv. //vesicatoria)// \\
 RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011037254.1|WP_011037254.1]] (104 aa)\\ RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011037254.1|WP_011037254.1]] (104 aa)\\
-3D structure: [[https://swissmodel.expasy.org/repository/uniprot/P0A0W1|https://swissmodel.expasy.org/repository/uniprot/P0A0W1]]+Synonym: AvrBs1.1\\ 
 +3D structure: [[https://swissmodel.expasy.org/repository/uniprot/P0A0W1|P0A0W1]] (homology model)
  
 ===== Biological function ===== ===== Biological function =====
Line 15: Line 16:
 === How discovered? === === How discovered? ===
  
-The XopH effector, also known as AvrBs1.1 (White //et al//., 2009), was discovered due to its virulent activity (Gurenn //et al//., 2006). Later, this effector began to be identified based on the coregulation with the TTS system (Gurenn //et al//., 2006), most recently began to be identified by a combination of biochemical approaches, including a new NMR-based method to discriminate inositol polyphosphate enantiomers (Blüher //et al//., 2017).+The XopH effector, also known as AvrBs1.1 (White //et al//., 2009), was first reported in 1988 (Ronald and Staskawicz 1988) and discovered due to its virulent activity (Gurenn //et al//., 2006). Later, this effector began to be identified based on the coregulation with the TTS system (Gurlebeck //et al//., 2006), most recently began to be identified by a combination of biochemical approaches, including a new NMR-based method to discriminate inositol polyphosphate enantiomers (Blüher //et al//., 2017).
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-The effector XopH, inhibited flg22-induced callose deposition //in planta// (Popov //et al//., 2016), dephosphorylates myo- inositol-hexakisphosphate (phytate, InsP6) //in vitro// and //in vivo// and enhanced disease symptoms (Blüher //et al//., 2017).+The effector XopH, inhibited flg22-induced callose deposition //in planta// (Popov //et al//., 2016), dephosphorylates myo- inositol-hexakisphosphate (phytate, InsP6) to produce InsP5[1-OH], both //in vitro// and //in vivo,// and enhanced disease symptoms (Blüher //et al//., 2017; White and Jones 2018). The xopH activity can led to diminishing amounts of inositol pyrophosphates InsP7 and InsP8 (White and Jones 2018). It was also identified host changes in gene expression due to XopH activity (White and Jones 2018).
 === Regulation === === Regulation ===
  
Line 40: Line 41:
 === In xanthomonads === === In xanthomonads ===
  
-Yes (//e.g. Xanthomonas campestris pv. campestris//(Potnis //et al//., 2012).+Yes (//e.g. Xanthomonas campestris pv. campestris// (Potnis //et al//., 2012), //Xanthomonas arboricola //pv. //corylina // (Hajri //et al//., 2012), //Xanthomonas euvesicatoria // (White and Jones 2018)).
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
Line 49: Line 50:
 Blüher D, Laha D, Thieme S, Hofer A, Eschen-Lippold L, Masch A, Balcke G, Pavlovic I, Nagel O, Schonsky A, Hinkelmann R, Wörner J, Parvin N, Greiner R, Weber S, Tissier A, Schutkowski M, Lee J, Jessen H, Schaaf G, Bonas U (2017). A 1-phytase type III effector interferes with plant hormone signaling. Nat. Commun. 8: 2159. DOI: [[http://dx.doi.org/10.1038/s41467-017-02195-8|10.1038/s41467-017-02195-8]] Blüher D, Laha D, Thieme S, Hofer A, Eschen-Lippold L, Masch A, Balcke G, Pavlovic I, Nagel O, Schonsky A, Hinkelmann R, Wörner J, Parvin N, Greiner R, Weber S, Tissier A, Schutkowski M, Lee J, Jessen H, Schaaf G, Bonas U (2017). A 1-phytase type III effector interferes with plant hormone signaling. Nat. Commun. 8: 2159. DOI: [[http://dx.doi.org/10.1038/s41467-017-02195-8|10.1038/s41467-017-02195-8]]
  
-Gurenn D, Thieme, F, Bonas U (2006). Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. J. Plant Physiol. 163: 233–255. DOI: [[https://doi.org/10.1016/j.jplph.2005.11.011|10.1016/j.jplph.2005.11.011]]+Gurlebeck D, Thieme, F, Bonas U (2006). Type III effector proteins from the plant pathogen //Xanthomonas //and their role in the interaction with the host plant. J. Plant Physiol. 163: 233–255. DOI: [[https://doi.org/10.1016/j.jplph.2005.11.011|10.1016/j.jplph.2005.11.011]] 
 + 
 +Hajri A, Pothier JF, Fischer-Le Saux M, Bonneau S, Poussier S, Boureau T, Duffy B, Manceau C (2011). Type three effector gene distribution and sequence analysis provide new insights into the pathogenicity of plant-pathogenic //Xanthomonas arboricola//. Appl Environ Microbiol. 78: 371-384. DOI: [[http://doi.org/10.1128/AEM.06119-11|10.1128/AEM.06119-11]]
  
 Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/mpmi-07-16-0137-r]] Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/mpmi-07-16-0137-r]]
  
-Potnis N, Minsavage G, Smith J K, Hurlbert J C, Norman D, Rodrigues R, Stall R E, Jones JB (2012). Avirulence proteins AvrBs7 from //Xanthomonas gardneri// and AvrBs1.1 from //Xanthomonas euvesicatoria// contribute to a novel gene-for-gene interaction in Pepper. Mol. Plant Microbe Interact. 25: 307-320. DOI: [[http://dx.doi.org/10.1094%20/MPMI%20-08-11-0205|10.1094/MPMI-08-11-0205]]+Potnis N, Minsavage G, Smith J K, Hurlbert J C, Norman D, Rodrigues R, Stall R E, Jones JB (2012). Avirulence proteins AvrBs7 from //Xanthomonas gardneri// and AvrBs1.1 from //Xanthomonas euvesicatoria// contribute to a novel gene-for-gene interaction in Pepper. Mol. Plant Microbe Interact. 25: 307-320. DOI: [[http://doi.org/10.1094/MPMI-08-11-0205|10.1094/MPMI-08-11-0205]] 
 + 
 +Ronald PC, Staskawicz BJ (1988). The avirulence gene AVrBs1 from //Xanthomonas campestris //pv. //vesicatoria// encodes a 50-KD protein. Mol. Plant Microbe Interact. 1: 191-198. 
 + 
 +White FF, Potnis N, Jones JB, Koebnik R (2009). The type III effectors of //Xanthomonas//. Mol. Plant Pathol. 10: 749-766. DOI: [[http://doi.org/10.1111/J.1364-3703.2009.00590.X|10.1111/J.1364-3703.2009.00590.X]]
  
-White FF, Potnis N, Jones JB, Koebnik R (2009). The type III effectors of //Xanthomonas//Mol. Plant Pathol. 10749-766. DOI: [[https://doi.org/10.1111/j.1364-3703.2009.00590.x|10.1111/J.1364-3703.2009.00590.X]]+White FF, Jones JB (2018). One effector at a timeNature Plants 4134-135. DOI: [[https://www.nature.com/articles/s41477-018-0114-0|10.1038/s41477-018-0114-0]]
  
 ===== Further reading ===== ===== Further reading =====
bacteria/t3e/xoph.1594226706.txt.gz · Last modified: 2020/07/08 18:45 by rkoebnik