User Tools

Site Tools


bacteria:t3e:xopl

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopl [2020/07/03 17:52]
rkoebnik
bacteria:t3e:xopl [2022/07/13 18:14] (current)
rkoebnik [Biological function]
Line 7: Line 7:
 Class: XopL\\ Class: XopL\\
 Family: XopL\\ Family: XopL\\
-Prototype: XopL<sub>Xcv85-10</sub> (//Xanthomonas euvesicatoria// pv. //euvesicatoria// aka //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\+Prototype: XCV3220 (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\
 RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/CAJ24951|CAJ24951]] (660 aa)\\ RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/CAJ24951|CAJ24951]] (660 aa)\\
-Examples of other sequences: XopL<sub>Xcv85-10</sub> [[https://www.ncbi.nlm.nih.gov/protein/CAJ24951.1|CAJ24951.1]] (Xee); XopK<sub>Xcc306</sub> [[https://www.ncbi.nlm.nih.gov/protein/21109412|21109412]] (Xcitricitri); XopL<sub>Xcc8004</sub> [[https://www.ncbi.nlm.nih.gov/protein/66575899|66575899]] (Xcampestriscampestris)\\ +Examples of other sequences: XopL<sub>Xcv85-10</sub> [[https://www.ncbi.nlm.nih.gov/protein/CAJ24951.1|CAJ24951.1]] (X. //euvesicatoria// pv. //euvesicatoria//); XopK<sub>Xcc306</sub> [[https://www.ncbi.nlm.nih.gov/protein/21109412|21109412]] (//X. citri// pv. //citri//); XopL<sub>Xcc8004</sub> [[https://www.ncbi.nlm.nih.gov/protein/66575899|66575899]] (//X. campestris// pv. //campestris//)\\ 
-3D structure: Full-length XopL<sub>Xcv85-10</sub> did not crystallize but fragments XopL[aa 144–450] and XopL[aa 474–660] yielded crystals (Singer //et al//., 2013). The crystal structure of the N-terminal region of XopL showed the presence of a leucine-rich repeat (LRR) domain, that might serve as a protein-protein interaction module for ubiquitination target recognition (Singer //et al//., 2013). The protein represents a new class of E3 ubiquitin ligases.+3D structure: [[https://www.rcsb.org/structure/4FC9|4FC9]], [[https://www.rcsb.org/structure/4FCG|4FCG]] (Singer //et al//., 2013). Full-length XopL<sub>Xcv85-10</sub> did not crystallize but fragments XopL[aa 144–450] and XopL[aa 474–660] yielded crystals (Singer //et al//., 2013). The crystal structure of the N-terminal region of XopL showed the presence of a leucine-rich repeat (LRR) domain, that might serve as a protein-protein interaction module for ubiquitination target recognition (Singer //et al//., 2013). The protein represents a new class of E3 ubiquitin ligases. 
 ===== Biological function ===== ===== Biological function =====
  
Line 32: Line 33:
   * XopL<sub>Xcv85-10</sub>  displays E3 ubiquitin ligase activity and inhibits expression of the elf18- and flg22-induced defense gene pNHL10 in //Arabidopsis//  mesophyll protoplasts, triggers cell death in //Nicotiana benthamiana//  and suppresses PTI in host plants (Singer //et al//., 2013; Popov //et al//., 2016).   * XopL<sub>Xcv85-10</sub>  displays E3 ubiquitin ligase activity and inhibits expression of the elf18- and flg22-induced defense gene pNHL10 in //Arabidopsis//  mesophyll protoplasts, triggers cell death in //Nicotiana benthamiana//  and suppresses PTI in host plants (Singer //et al//., 2013; Popov //et al//., 2016).
   * In contrast, XopL<sub>Xoc</sub>  does not induce cell death in //N. benthamiana//. FIXME   * In contrast, XopL<sub>Xoc</sub>  does not induce cell death in //N. benthamiana//. FIXME
-  * XopL<sub>Xcc8004</sub>  is an essential T3E for full virulence of //Xcc//  8004 in Chinese radish (Jiang //et al//., 2009).+  * XopL<sub>Xcc8004</sub>  is required for full virulence and growth of //X. campestris//  pv. //campestris//  in the host plant Chinese radish (Jiang //et al.//, 2009).
   * XopL<sub>Xcv85-10</sub>  suppresses PAMP-related defense gene expression and is an E3 ubiquitin ligase (Singer //et al//., 2013).   * XopL<sub>Xcv85-10</sub>  suppresses PAMP-related defense gene expression and is an E3 ubiquitin ligase (Singer //et al//., 2013).
   * Transient expression of XopL, led to a nearly complete elimination of stromules and the relocation of plastids to the nucleus and further characterization of XopL revealed that the E3 ligase activity is essential for two plastid phenotypes (Erickson //et al//., 2016).   * Transient expression of XopL, led to a nearly complete elimination of stromules and the relocation of plastids to the nucleus and further characterization of XopL revealed that the E3 ligase activity is essential for two plastid phenotypes (Erickson //et al//., 2016).
   * XopL<sub>Xap</sub>  is a T3E which supports //X. axonopodis//  pv. //punicae//  for multiplication in pomegranate by suppressing plant immune responses including plant cell death (Soni //et al//., 2017).   * XopL<sub>Xap</sub>  is a T3E which supports //X. axonopodis//  pv. //punicae//  for multiplication in pomegranate by suppressing plant immune responses including plant cell death (Soni //et al//., 2017).
   * XopL<sub>Xcc8004</sub>  interferes with innate immunity of //Arabidopsis//  (Yan //et al//., 2019).   * XopL<sub>Xcc8004</sub>  interferes with innate immunity of //Arabidopsis//  (Yan //et al//., 2019).
 +  * //Xcv//  strain 85-10 suppresses host autophagy by utilizing type-III effector XopL. Intriguingly, XopL is targeted for degradation by defense-related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery (Leong //et al.//, 2022).
 === Localization === === Localization ===
  
Line 48: Line 49:
 === Interaction partners === === Interaction partners ===
  
-Unknown.+XopL<sub>//Xcv//85-10</sub>  interacts with and degrades the autophagy component SH3P2 via its E3 ligase activity to promote infection (Leong //et al.//, 2022).
  
 ===== Conservation ===== ===== Conservation =====
Line 54: Line 55:
 === In xanthomonads === === In xanthomonads ===
  
-Yes in //Xanthomonas//  (//e.g.//, //X. euvesicatoria//, //X. citri//, //X. axonopodis//, //X. oryzae//, //X. oryzicola//, //X//. //fragariae//, //X//. //perforans, X. gardneri//, //X. campestris//  pv. //campestris//, but not //X. campestris//  pv. //raphani//, in some //X. arboricola//  pathovars). See for example [[https://doi.org/10.1094/MPMI-22-11-1401|Table 2]] in Jiang //et al//. (2009) and [[https://doi.org/10.1371/journal.ppat.1003121.s001|Figure S1]] in Singer //et al//. (2013). +Yes (//e.g.//, //X. euvesicatoria//, //X. citri//, //X. axonopodis//, //X. oryzae//, //X. oryzicola//, //X//. //fragariae//, //X//. //perforans, X. gardneri//, //X. campestris// pv. //campestris//, but not //X. campestris// pv. //raphani//, in some //X. arboricola// pathovars). See for example [[https://doi.org/10.1094/MPMI-22-11-1401|Table 2]] in Jiang //et al//. (2009) and [[https://doi.org/10.1371/journal.ppat.1003121.s001|Figure S1]] in Singer //et al//. (2013).
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
Line 62: Line 62:
 ===== References ===== ===== References =====
  
-Erickson JL, Adlung N, Lampe C, Bonas U, Schattat MH (2018). The //Xanthomonas//  effector XopL uncovers the role of microtubules in stromule extension and dynamics in //Nicotiana benthamiana//. Plant J. 93: 856-870. DOI:[[https://doi.org/10.1111/tpj.13813|10.1111/tpj.13813]]+Adlung N (2016). Charakterisierung der Avirulenzaktivität von XopQ und Identifizierung möglicher Interaktoren von XopL aus //Xanthomonas campestris// pv. //vesicatoria//. Doctoral Thesis. Martin-Luther-Universität Halle-Wittenberg, Germany. PDF: [[https://d-nb.info/1116951061/34|d-nb.info/1116951061/34]] FIXME 
 + 
 +Erickson JL, Adlung N, Lampe C, Bonas U, Schattat MH (2018). The //Xanthomonas// effector XopL uncovers the role of microtubules in stromule extension and dynamics in //Nicotiana benthamiana//. Plant J. 93: 856-870. DOI:[[https://doi.org/10.1111/tpj.13813|10.1111/tpj.13813]] 
 + 
 +Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL (2009). Identification of six type III effector genes with the PIP box in //Xanthomonas campestris// pv //campestris// and five of them contribute individually to full pathogenicity. Mol. Plant Microbe Interact. 22: 1401-1411. DOI: [[https://doi.org/10.1094/MPMI-22-11-1401|10.1094/MPMI-22-11-1401]]
  
-Jiang WJiang BLXu RQHuang JDWei HYJiang GFCen WJLiu JGe YYLi GHSu LLHang XHTang DJLu GTFeng JX, He YQTang JL (2009). Identification of six type III effector genes with the PIP box in //Xanthomonas campestris//  pv //campestris//  and five of them contribute individually to full pathogenicityMolPlant Microbe Interact. 221401-1411. DOI: [[https://doi.org/10.1094/MPMI-22-11-1401|10.1094/MPMI-22-11-1401]]+Leong JXRaffeiner MSpinti DLangin GFranz-Wachtel MGuzman ARKim JGPandey PMinina AEMacek BHafrén ABozkurt TOMudgett MBBörnke FHofius DÜstün S (2022). A bacterial effector counteracts host autophagy by promoting degradation of an autophagy componentEMBO J41e110352. DOI: [[https://doi.org/10.15252/embj.2021110352|10.15252/embj.2021110352]]
  
-Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae//  pv. //oryzae//  requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS Microbiol. Lett. 363: fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]]+Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae// pv. //oryzae// requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS Microbiol. Lett. 363: fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]]
  
-Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria//  type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]+Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]
  
 Singer AU, Schulze S, Skarina T, Xu X, Cui H, Eschen-Lippold L, Egler M, Srikumar T, Raught B, Lee J, Scheel D, Savchenko A, Bonas U (2013). A pathogen type III effector with a novel E3 ubiquitin ligase architecture. PLoS Pathog. 9: e1003121. DOI: [[https://doi.org/10.1371/journal.ppat.1003121|10.1371/journal.ppat.1003121]] Singer AU, Schulze S, Skarina T, Xu X, Cui H, Eschen-Lippold L, Egler M, Srikumar T, Raught B, Lee J, Scheel D, Savchenko A, Bonas U (2013). A pathogen type III effector with a novel E3 ubiquitin ligase architecture. PLoS Pathog. 9: e1003121. DOI: [[https://doi.org/10.1371/journal.ppat.1003121|10.1371/journal.ppat.1003121]]
  
-Soni M, Mondal KK. (2017). //Xanthomonas axonopodis//  pv. //punicae//  employs XopL effector to suppress pomegranate immunity. J. Integr. Plant Biol. 60: 341-357. DOI: [[https://doi.org/10.1111/jipb.12615|10.1111/jipb.12615]]+Soni M, Mondal KK. (2017). //Xanthomonas axonopodis// pv. //punicae// employs XopL effector to suppress pomegranate immunity. J. Integr. Plant Biol. 60: 341-357. DOI: [[https://doi.org/10.1111/jipb.12615|10.1111/jipb.12615]]
  
-Yan X, Tao J, Luo HL, Tan LT, Rong W, Li HP, He CZ (2019). A type III effector XopL<sub>Xcc8004</sub>  is vital for //Xanthomonas campestris//  pathovar //campestris//  to regulate plant immunity. Res. Microbiol. 170: 138-146. DOI: [[https://doi.org/10.1016/j.resmic.2018.12.001|10.1016/j.resmic.2018.12.001]]+Yan X, Tao J, Luo HL, Tan LT, Rong W, Li HP, He CZ (2019). A type III effector XopL<sub>Xcc8004</sub> is vital for //Xanthomonas campestris// pathovar //campestris// to regulate plant immunity. Res. Microbiol. 170: 138-146. DOI: [[https://doi.org/10.1016/j.resmic.2018.12.001|10.1016/j.resmic.2018.12.001]]
  
bacteria/t3e/xopl.1593791522.txt.gz · Last modified: 2020/07/03 17:52 by rkoebnik