User Tools

Site Tools


bacteria:t3e:xopl

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopl [2022/07/13 18:10]
rkoebnik [Biological function]
bacteria:t3e:xopl [2022/07/13 18:14] (current)
rkoebnik [Biological function]
Line 38: Line 38:
   * XopL<sub>Xap</sub>  is a T3E which supports //X. axonopodis//  pv. //punicae//  for multiplication in pomegranate by suppressing plant immune responses including plant cell death (Soni //et al//., 2017).   * XopL<sub>Xap</sub>  is a T3E which supports //X. axonopodis//  pv. //punicae//  for multiplication in pomegranate by suppressing plant immune responses including plant cell death (Soni //et al//., 2017).
   * XopL<sub>Xcc8004</sub>  interferes with innate immunity of //Arabidopsis//  (Yan //et al//., 2019).   * XopL<sub>Xcc8004</sub>  interferes with innate immunity of //Arabidopsis//  (Yan //et al//., 2019).
-  * //Xcv//  strain 85-10 suppresses host autophagy by utilizing type-III effector XopL (Leong //et al.//, 2022). Intriguingly, XopL is targeted for degradation by defense-related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery.+  * //Xcv//  strain 85-10 suppresses host autophagy by utilizing type-III effector XopL. Intriguingly, XopL is targeted for degradation by defense-related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery (Leong //et al.//, 2022).
 === Localization === === Localization ===
  
Line 55: Line 55:
 === In xanthomonads === === In xanthomonads ===
  
-Yes (//e.g.//, //X. euvesicatoria//, //X. citri//, //X. axonopodis//, //X. oryzae//, //X. oryzicola//, //X//. //fragariae//, //X//. //perforans, X. gardneri//, //X. campestris//  pv. //campestris//, but not //X. campestris//  pv. //raphani//, in some //X. arboricola//  pathovars). See for example [[https://doi.org/10.1094/MPMI-22-11-1401|Table 2]] in Jiang //et al//. (2009) and [[https://doi.org/10.1371/journal.ppat.1003121.s001|Figure S1]] in Singer //et al//. (2013). +Yes (//e.g.//, //X. euvesicatoria//, //X. citri//, //X. axonopodis//, //X. oryzae//, //X. oryzicola//, //X//. //fragariae//, //X//. //perforans, X. gardneri//, //X. campestris// pv. //campestris//, but not //X. campestris// pv. //raphani//, in some //X. arboricola// pathovars). See for example [[https://doi.org/10.1094/MPMI-22-11-1401|Table 2]] in Jiang //et al//. (2009) and [[https://doi.org/10.1371/journal.ppat.1003121.s001|Figure S1]] in Singer //et al//. (2013).
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
Line 63: Line 62:
 ===== References ===== ===== References =====
  
-Adlung N (2016). Charakterisierung der Avirulenzaktivität von XopQ und Identifizierung möglicher Interaktoren von XopL aus //Xanthomonas campestris//  pv. //vesicatoria//. Doctoral Thesis. Martin-Luther-Universität Halle-Wittenberg, Germany. PDF: [[https://d-nb.info/1116951061/34|d-nb.info/1116951061/34]] FIXME+Adlung N (2016). Charakterisierung der Avirulenzaktivität von XopQ und Identifizierung möglicher Interaktoren von XopL aus //Xanthomonas campestris// pv. //vesicatoria//. Doctoral Thesis. Martin-Luther-Universität Halle-Wittenberg, Germany. PDF: [[https://d-nb.info/1116951061/34|d-nb.info/1116951061/34]] FIXME
  
-Erickson JL, Adlung N, Lampe C, Bonas U, Schattat MH (2018). The //Xanthomonas//  effector XopL uncovers the role of microtubules in stromule extension and dynamics in //Nicotiana benthamiana//. Plant J. 93: 856-870. DOI:[[https://doi.org/10.1111/tpj.13813|10.1111/tpj.13813]]+Erickson JL, Adlung N, Lampe C, Bonas U, Schattat MH (2018). The //Xanthomonas// effector XopL uncovers the role of microtubules in stromule extension and dynamics in //Nicotiana benthamiana//. Plant J. 93: 856-870. DOI:[[https://doi.org/10.1111/tpj.13813|10.1111/tpj.13813]]
  
-Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL (2009). Identification of six type III effector genes with the PIP box in //Xanthomonas campestris//  pv //campestris//  and five of them contribute individually to full pathogenicity. Mol. Plant Microbe Interact. 22: 1401-1411. DOI: [[https://doi.org/10.1094/MPMI-22-11-1401|10.1094/MPMI-22-11-1401]]+Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL (2009). Identification of six type III effector genes with the PIP box in //Xanthomonas campestris// pv //campestris// and five of them contribute individually to full pathogenicity. Mol. Plant Microbe Interact. 22: 1401-1411. DOI: [[https://doi.org/10.1094/MPMI-22-11-1401|10.1094/MPMI-22-11-1401]]
  
 Leong JX, Raffeiner M, Spinti D, Langin G, Franz-Wachtel M, Guzman AR, Kim JG, Pandey P, Minina AE, Macek B, Hafrén A, Bozkurt TO, Mudgett MB, Börnke F, Hofius D, Üstün S (2022). A bacterial effector counteracts host autophagy by promoting degradation of an autophagy component. EMBO J. 41: e110352. DOI: [[https://doi.org/10.15252/embj.2021110352|10.15252/embj.2021110352]] Leong JX, Raffeiner M, Spinti D, Langin G, Franz-Wachtel M, Guzman AR, Kim JG, Pandey P, Minina AE, Macek B, Hafrén A, Bozkurt TO, Mudgett MB, Börnke F, Hofius D, Üstün S (2022). A bacterial effector counteracts host autophagy by promoting degradation of an autophagy component. EMBO J. 41: e110352. DOI: [[https://doi.org/10.15252/embj.2021110352|10.15252/embj.2021110352]]
  
-Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae//  pv. //oryzae//  requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS Microbiol. Lett. 363: fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]] +Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae// pv. //oryzae// requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS Microbiol. Lett. 363: fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]]
- +
-Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria//  type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]] +
- +
-Singer AU, Schulze S, Skarina T, Xu X, Cui H, Eschen-Lippold L, Egler M, Srikumar T, Raught B, Lee J, Scheel D, Savchenko A, Bonas U (2013). A pathogen type III effector with a novel E3 ubiquitin ligase architecture. PLoS Pathog. 9: e1003121. DOI: [[https://doi.org/10.1371/journal.ppat.1003121|10.1371/journal.ppat.1003121]] +
- +
-Soni M, Mondal KK. (2017). //Xanthomonas axonopodis//  pv. //punicae//  employs XopL effector to suppress pomegranate immunity. J. Integr. Plant Biol. 60: 341-357. DOI: [[https://doi.org/10.1111/jipb.12615|10.1111/jipb.12615]] +
- +
-Yan X, Tao J, Luo HL, Tan LT, Rong W, Li HP, He CZ (2019). A type III effector XopL<sub>Xcc8004</sub>  is vital for //Xanthomonas campestris//  pathovar //campestris//  to regulate plant immunity. Res. Microbiol. 170: 138-146. DOI: [[https://doi.org/10.1016/j.resmic.2018.12.001|10.1016/j.resmic.2018.12.001]] +
- +
-===== Conservation ===== +
- +
-=== In xanthomonads === +
- +
-Yes (//e.g.//, //X. euvesicatoria//, //X. citri//, //X. axonopodis//, //X. oryzae//, //X. oryzicola//, //X//. //fragariae//, //X//. //perforans, X. gardneri//, //X. campestris// pv. //campestris//, but not //X. campestris// pv. //raphani//, in some //X. arboricola// pathovars). See for example [[https://doi.org/10.1094/MPMI-22-11-1401|Table 2]] in Jiang //et al//. (2009) and [[https://doi.org/10.1371/journal.ppat.1003121.s001|Figure S1]] in Singer //et al//. (2013). +
-=== In other plant pathogens/symbionts === +
- +
-No. +
- +
-===== References ===== +
- +
-Adlung N (2016). Charakterisierung der Avirulenzaktivität von XopQ und Identifizierung möglicher Interaktoren von XopL aus //Xanthomonas campestris//  pv. //vesicatoria//. Doctoral Thesis. Martin-Luther-Universität Halle-Wittenberg, Germany. PDF: [[https://d-nb.info/1116951061/34|d-nb.info/1116951061/34]] FIXME +
- +
-Erickson JL, Adlung N, Lampe C, Bonas U, Schattat MH (2018). The //Xanthomonas//  effector XopL uncovers the role of microtubules in stromule extension and dynamics in //Nicotiana benthamiana//. Plant J. 93: 856-870. DOI:[[https://doi.org/10.1111/tpj.13813|10.1111/tpj.13813]] +
- +
-Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL (2009). Identification of six type III effector genes with the PIP box in //Xanthomonas campestris//  pv //campestris//  and five of them contribute individually to full pathogenicity. Mol. Plant Microbe Interact. 22: 1401-1411. DOI: [[https://doi.org/10.1094/MPMI-22-11-1401|10.1094/MPMI-22-11-1401]] +
- +
-Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae//  pv. //oryzae//  requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS Microbiol. Lett. 363: fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]]+
  
-Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria//  type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]+Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]
  
 Singer AU, Schulze S, Skarina T, Xu X, Cui H, Eschen-Lippold L, Egler M, Srikumar T, Raught B, Lee J, Scheel D, Savchenko A, Bonas U (2013). A pathogen type III effector with a novel E3 ubiquitin ligase architecture. PLoS Pathog. 9: e1003121. DOI: [[https://doi.org/10.1371/journal.ppat.1003121|10.1371/journal.ppat.1003121]] Singer AU, Schulze S, Skarina T, Xu X, Cui H, Eschen-Lippold L, Egler M, Srikumar T, Raught B, Lee J, Scheel D, Savchenko A, Bonas U (2013). A pathogen type III effector with a novel E3 ubiquitin ligase architecture. PLoS Pathog. 9: e1003121. DOI: [[https://doi.org/10.1371/journal.ppat.1003121|10.1371/journal.ppat.1003121]]
  
-Soni M, Mondal KK. (2017). //Xanthomonas axonopodis//  pv. //punicae//  employs XopL effector to suppress pomegranate immunity. J. Integr. Plant Biol. 60: 341-357. DOI: [[https://doi.org/10.1111/jipb.12615|10.1111/jipb.12615]]+Soni M, Mondal KK. (2017). //Xanthomonas axonopodis// pv. //punicae// employs XopL effector to suppress pomegranate immunity. J. Integr. Plant Biol. 60: 341-357. DOI: [[https://doi.org/10.1111/jipb.12615|10.1111/jipb.12615]]
  
-Yan X, Tao J, Luo HL, Tan LT, Rong W, Li HP, He CZ (2019). A type III effector XopL<sub>Xcc8004</sub>  is vital for //Xanthomonas campestris//  pathovar //campestris//  to regulate plant immunity. Res. Microbiol. 170: 138-146. DOI: [[https://doi.org/10.1016/j.resmic.2018.12.001|10.1016/j.resmic.2018.12.001]]+Yan X, Tao J, Luo HL, Tan LT, Rong W, Li HP, He CZ (2019). A type III effector XopL<sub>Xcc8004</sub> is vital for //Xanthomonas campestris// pathovar //campestris// to regulate plant immunity. Res. Microbiol. 170: 138-146. DOI: [[https://doi.org/10.1016/j.resmic.2018.12.001|10.1016/j.resmic.2018.12.001]]
  
bacteria/t3e/xopl.1657728608.txt.gz · Last modified: 2022/07/13 18:10 by rkoebnik