User Tools

Site Tools


bacteria:t3e:xopo

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
bacteria:t3e:xopo [2020/07/09 11:08]
rkoebnik [References]
bacteria:t3e:xopo [2020/11/26 16:16] (current)
zdubrow
Line 3: Line 3:
 Author: Harrold van den Burg\\ Author: Harrold van den Burg\\
 Internal reviewer: [[https://www.researchgate.net/profile/Jakub_Pecenka|Jakub Pečenka]]\\ Internal reviewer: [[https://www.researchgate.net/profile/Jakub_Pecenka|Jakub Pečenka]]\\
-Expert reviewer: FIXME+Expert reviewer: Zoe Dubrow
  
 Class: XopO\\ Class: XopO\\
Line 15: Line 15:
 === How discovered? === === How discovered? ===
  
-XopO was identified in a genetic screen, using a Tn//5//-based transposon construct harboring the coding sequence for the HR-inducing domain of AvrBs2, but devoid of the effectors' T3SS signal, that was randomly inserted into the genome of //X. campestris// pv. //vesicatoria// (//Xcv//)// //// //strain 85-10. The XopO::AvrBs2 fusion protein triggered a //Bs2//-dependent hypersensitive response (HR) in pepper leaves (Roden //et al//., 2004).+XopO was identified in a genetic screen, using a Tn//5//-based transposon construct harboring the coding sequence for the HR-inducing domain of AvrBs2, but devoid of the effectors' T3SS signal, that was randomly inserted into the genome of //X. campestris// pv. //vesicatoria// (//Xcv//)strain 85-10. The XopO::AvrBs2 fusion protein triggered a //Bs2//-dependent hypersensitive response (HR) in pepper leaves (Roden //et al//., 2004).
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
Line 40: Line 40:
 === Interaction partners === === Interaction partners ===
  
-XopO was shown to interact with tomato 14-3-3- proteins (TFT) (Dubrow //et al//., 2018).+XopO was shown to interact with tomato 14-3-3 (TFT) proteins (Dubrow //et al//., 2018).
  
 ===== Conservation ===== ===== Conservation =====
Line 46: Line 46:
 === In xanthomonads === === In xanthomonads ===
  
-Yes, in some xanthomonads (//e.g.//, //X. euvesicatoria//, //X. oryzae//) (Lang //et al//., 2019). The //xopO//  gene is a differential T3E gene between //Xoo//  and //Xoc//  (Hajri //et al//., 2012).+Yes, in some xanthomonads (//e.g.//, //X. euvesicatoria//, //X. oryzae//) (Lang //et al//., 2019). X//opO// is a differential T3E gene between //Xoo//  and //Xoc//  (Hajri //et al//., 2012).
  
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
-Yes, //e.g.//  //Pseudomonas syringae//  (Li //et al//., 2014).+Yes, //e.g.// homologs (AvrRps4 and HopK1) in //Pseudomonas syringae//  (Li //et al//., 2014).
  
 ===== References ===== ===== References =====
  
-Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016) Whole-genome sequences of //Xanthomonas euvesicatoria// strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Front Plant Sci. 7: 1805. DOI: [[https://doi.org/10.3389/fpls.2016.01805|10.3389/fpls.2016.01805]]+Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016) Whole-genome sequences of //Xanthomonas euvesicatoria//  strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Front Plant Sci. 7: 1805. DOI: [[https://doi.org/10.3389/fpls.2016.01805|10.3389/fpls.2016.01805]]
  
-Dubrow Z, Sunitha S, Kim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YC, Ozbaki-Yagan N, Vance H, Sessa G, Mudgett MB (2018). Tomato 14-3-3 proteins are required for //Xv3// disease resistance and interact with a subset of //Xanthomonas euvesicatoria// effectors. Mol. Plant Microbe Interact. 31: 1301-1311. DOI: [[https://doi.org/10.1094/MPMI-02-18-0048-R|10.1094/MPMI-02-18-0048-R]]+Dubrow Z, Sunitha S, Kim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YC, Ozbaki-Yagan N, Vance H, Sessa G, Mudgett MB (2018). Tomato 14-3-3 proteins are required for //Xv3//  disease resistance and interact with a subset of //Xanthomonas euvesicatoria//  effectors. Mol. Plant Microbe Interact. 31: 1301-1311. DOI: [[https://doi.org/10.1094/MPMI-02-18-0048-R|10.1094/MPMI-02-18-0048-R]]
  
 Hajri A, Brin C, Zhao S, David P, Feng JX, Koebnik R, Szurek B, Verdier V, Boureau T, Poussier S (2012). Multilocus sequence analysis and type III effector repertoire mining provide new insights into the evolutionary history and virulence of //Xanthomonas oryzae//. Mol. Plant Pathol. 13: 288-302. DOI: [[https://doi.org/10.1111/j.1364-3703.2011.00745.x|10.1111/j.1364-3703.2011.00745.x]] Hajri A, Brin C, Zhao S, David P, Feng JX, Koebnik R, Szurek B, Verdier V, Boureau T, Poussier S (2012). Multilocus sequence analysis and type III effector repertoire mining provide new insights into the evolutionary history and virulence of //Xanthomonas oryzae//. Mol. Plant Pathol. 13: 288-302. DOI: [[https://doi.org/10.1111/j.1364-3703.2011.00745.x|10.1111/j.1364-3703.2011.00745.x]]
Line 66: Line 66:
 Li G, Froehlich JE, Elowsky C, Msanne J, Ostosh AC, Zhang C, Awada T, Alfano JR, (2014). Distinct //Pseudomonas //type-III effectors use a cleavable transit peptide to target chloroplasts. Plant J. 77: 310–321. DOI: [[https://doi.org/10.1111/tpj.12396|10.1111/tpj.12396]] Li G, Froehlich JE, Elowsky C, Msanne J, Ostosh AC, Zhang C, Awada T, Alfano JR, (2014). Distinct //Pseudomonas //type-III effectors use a cleavable transit peptide to target chloroplasts. Plant J. 77: 310–321. DOI: [[https://doi.org/10.1111/tpj.12396|10.1111/tpj.12396]]
  
-Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]+Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria//  type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]
  
-Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas// infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]]+Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas//  infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]]
  
-Sohn KH, Zhang Y, Jones JD (2009). The //Pseudomonas syringae// effector protein, AvrRPS4, requires in planta processing and the KRVY domain to function. Plant J. 57: 1079-1091. DOI: [[https://doi.org/10.1111/j.1365-313X.2008.03751.x|10.1111/j.1365-313X.2008.03751.x]] FIXME Information needs to be added to the profile.+Sohn KH, Zhang Y, Jones JD (2009). The //Pseudomonas syringae//  effector protein, AvrRPS4, requires in planta processing and the KRVY domain to function. Plant J. 57: 1079-1091. DOI: [[https://doi.org/10.1111/j.1365-313X.2008.03751.x|10.1111/j.1365-313X.2008.03751.x]] FIXME  Information needs to be added to the profile.
  
-Teper D, Sunitha S, Martin GB, Sessa G (2015). Five //Xanthomonas// type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. Plant Signal. Behav. 10: e1064573. DOI: [[https://doi.org/10.1080/15592324.2015.1064573|10.1080/15592324.2015.1064573]]+Teper D, Sunitha S, Martin GB, Sessa G (2015). Five //Xanthomonas//  type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. Plant Signal. Behav. 10: e1064573. DOI: [[https://doi.org/10.1080/15592324.2015.1064573|10.1080/15592324.2015.1064573]]
  
bacteria/t3e/xopo.1594285725.txt.gz · Last modified: 2020/07/09 11:08 by rkoebnik