User Tools

Site Tools


bacteria:t3e:xopr

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
bacteria:t3e:xopr [2020/05/14 10:58]
127.0.0.1 external edit
bacteria:t3e:xopr [2020/07/09 12:11] (current)
rkoebnik [XopR]
Line 1: Line 1:
 ====== XopR ====== ====== XopR ======
  
-Author: Fernando Tavares\\ +Author: [[https://www.researchgate.net/profile/Fernando_Tavares|Fernando Tavares]]\\ 
-Reviewer: FIXME\\+Reviewer: [[https://www.researchgate.net/profile/Amandine_Cunty|Amandine Cunty]]\\
 Expert reviewer: FIXME Expert reviewer: FIXME
  
 Class: XopR\\ Class: XopR\\
 Family: XopR\\ Family: XopR\\
-Prototype: XopR (//Xanthomonas oryzae// pv. //oryzicola// strain BLS256)\\ +Prototype: XOO4134 (//Xanthomonas oryzae// pv. //oryzae//strain MAFF 311018)\\ 
-RefSeq ID: XopR [[https://www.ncbi.nlm.nih.gov/protein/WP_014505297.1|WP_014505297.1]] (437 aa)+RefSeq ID: XopR [[https://www.ncbi.nlm.nih.gov/protein/WP_014505297.1|WP_014505297.1]] (437 aa)\\
 3D structure: Unknown 3D structure: Unknown
  
Line 14: Line 14:
  
 === How discovered? === === How discovered? ===
 +
 //xopR// was firstly identified as a putative T3E ORF (XOO4134) shown to be under regulation of HrpX preceded by both a PIP box and a -10 box-like motif (Furutani //et al//., 2006). Later, translocation of XOO4134::Cya fusion proteins into plant cells were shown to occur via a T3SS (Furutani //et al//., 2009; White //et al//., 2009). //xopR// was firstly identified as a putative T3E ORF (XOO4134) shown to be under regulation of HrpX preceded by both a PIP box and a -10 box-like motif (Furutani //et al//., 2006). Later, translocation of XOO4134::Cya fusion proteins into plant cells were shown to occur via a T3SS (Furutani //et al//., 2009; White //et al//., 2009).
- 
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
-Evidence for T3SS-dependent secretion and translocation of XopR into plant cells was mainly based on calmodulin-dependent adenylate cyclase (Cya) reporter assays of fusion proteins (Furutani //et al//., 2009). 
  
 +Evidence for T3SS-dependent secretion and translocation of XopR into plant cells was mainly based on calmodulin-dependent adenylate cyclase (Cya) reporter assays of fusion proteins (Furutani //et al//., 2009).
 === Regulation === === Regulation ===
 +
 Functional studies using //hrp//-inducing and non-//hrp//-inducing media and reverse-transcriptase PCR in wild type and Xoo ∆//hrpX// mutants showed that the expression of //xopR// is //hrpX// dependent (Verma //et al//., 2019). These results are indirectly supported by previous findings showing that //X. oryza// pv. //oryza// (Xoo) deficient mutants for //xrvB//, a gene coding for a repressor of //hrp// gene expression, leads to an increase of XopR into plant cells (Kametani-Ikawa //et al//., 2011). Functional studies using //hrp//-inducing and non-//hrp//-inducing media and reverse-transcriptase PCR in wild type and Xoo ∆//hrpX// mutants showed that the expression of //xopR// is //hrpX// dependent (Verma //et al//., 2019). These results are indirectly supported by previous findings showing that //X. oryza// pv. //oryza// (Xoo) deficient mutants for //xrvB//, a gene coding for a repressor of //hrp// gene expression, leads to an increase of XopR into plant cells (Kametani-Ikawa //et al//., 2011).
  
 +qRT-PCR revealed that transcript levels of 15 out of 18 tested non-TAL effector genes (as well as the regulatory genes //hrpG// and //hrpX//) were significantly reduced in the //Xanthomonas oryzae// pv. //oryzae// Δ//xrvC// mutant compared with those in the wild-type strain PXO99<sup>A</sup>  , but this did not apply to //xopR// (Liu //et al.//, 2016).
 === Phenotypes === === Phenotypes ===
-In the last few years a comprehensive body of experimental evidence has been gathered supporting a multiple action of XopR in hampering host plant defenses, namely by fostering bacterial growth //in planta//, and suppressing pathogen-associated molecular patterns (PAMP) triggered host plant immunity (PTI) (Akimoto-Tomiyama //et al//., 2012; Wang //et al//., 2016; Medina //et al//., 2018; Verma //et al//., 2018; Verma //et al//., 2019). In fact, early studies suggested that XopR suppress PAMP-triggered stomatal closure in transgenic //Arabidopsis// expressing XopR (Wang //et al//., 2016). More recently, when compared with a Xoo wild type strain, //xopR// deficient mutants (Xoo ∆x//opR//) infiltrated in rice leaves led to an increase of callose deposits, and a significant higher production of reactive oxygen species (ROS), namely of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and superoxide anion (O<sub>2</sub><sup>-</sup>), known as the main components of the plant oxidative burst. Furthermore, reverse transcriptase expression analyses of eight rice genes linked to plant disease resistance (//BRI1//, //GST1//, //PR2//, //PR5//, //RAC1//, //SERK1//, //WRKY29// and //WRKY71//) were shown to be up-regulated in rice leaves inoculated with Xoo ∆x//opR// (Verma //et al//., 2018; Verma //et al//., 2019). To further support these findings, complementation of Xoo ∆x//opR// with //xopR// was able to restore the disease phenotype of the wild type Xoo strain (Verma //et al//., 2018; Verma //et al//., 2019). 
  
 +In the last few years a comprehensive body of experimental evidence has been gathered supporting a multiple action of XopR in hampering host plant defenses, namely by fostering bacterial growth //in planta//, and suppressing pathogen-associated molecular patterns (PAMP) triggered host plant immunity (PTI) (Akimoto-Tomiyama //et al//., 2012; Wang //et al//., 2016; Medina //et al//., 2018; Verma //et al//., 2018; Verma //et al//., 2019). In fact, early studies suggested that XopR suppress PAMP-triggered stomatal closure in transgenic //Arabidopsis// expressing XopR (Wang //et al//., 2016). More recently, when compared with a Xoo wild type strain, //xopR// deficient mutants (Xoo ∆x//opR//) infiltrated in rice leaves led to an increase of callose deposits, and a significant higher production of reactive oxygen species (ROS), namely of hydrogen peroxide (H<sub>2</sub> O<sub>2</sub>) and superoxide anion (O<sub>2</sub> <sup>-</sup>  ), known as the main components of the plant oxidative burst (reference FIXME ). Furthermore, reverse transcriptase expression analyses of eight rice genes linked to plant disease resistance (//BRI1//, //GST1//, //PR2//, //PR5//, //RAC1//, //SERK1//, //WRKY29// and //WRKY71//) were shown to be up-regulated in rice leaves inoculated with Xoo ∆x//opR// (Verma //et al//., 2018; Verma //et al//., 2019). To further support these findings, complementation of Xoo ∆x//opR// with //xopR// was able to restore the disease phenotype of the wild type Xoo strain (Verma //et al//., 2018; Verma //et al//., 2019).
 === Localization === === Localization ===
-Confocal microscopy studies of XopR::EYFP (enhanced yellow fluorescent protein) fusion protein transiently expressed in //Nicotiana benthaminiana//, suggested that XopR is localized to the plasma membrane of plant epidermal cells (Akimoto-Tomiyama //et al//., 2012; Verma //et al//., 2019). These results are further corroborate by findings assigning XopR localization to the plasma membrane of rice protoplasts, contrary to other effectors analysed, namely XopL XopV, XopC, and XopW, which were localized to the cytoplasm (Wang //et al//., 2016). 
  
 +Confocal microscopy studies of XopR::EYFP (enhanced yellow fluorescent protein) fusion protein transiently expressed in //Nicotiana benthaminiana//, suggested that XopR is localized to the plasma membrane of plant epidermal cells (Akimoto-Tomiyama //et al//., 2012; Verma //et al//., 2019). These results are further corroborate by findings assigning XopR localization to the plasma membrane of rice protoplasts, contrary to other effectors analysed, namely XopL XopV, XopC, and XopW, which were localized to the cytoplasm (Wang //et al//., 2016).
 === Enzymatic function === === Enzymatic function ===
 +
 Unknown. Unknown.
  
 === Interaction partners === === Interaction partners ===
-Co-immunoprecipitation assays indicate that XopR associates with various receptor-like cytoplasmic kinases (RLCKs), including BIK1 known to be involved in pathogen-associated molecular patterns (PAMP) to triggered stomatal closure (Wang //et al//., 2016). //In vitro// kinase assays indicate that XopR is phosphorylate by BIK1 likely affecting BIK1 targets, and possibly impairing PAMP-triggered stomatal immunity (Wang //et al//., 2016). 
  
 +Co-immunoprecipitation assays indicate that XopR associates with various receptor-like cytoplasmic kinases (RLCKs), including BIK1 known to be involved in pathogen-associated molecular patterns (PAMP) to triggered stomatal closure (Wang //et al//., 2016). //In vitro// kinase assays indicate that XopR is phosphorylated by BIK1 likely affecting BIK1 targets, and possibly impairing PAMP-triggered stomatal immunity (Wang //et al//., 2016).
 ===== Conservation ===== ===== Conservation =====
  
 === In xanthomonads === === In xanthomonads ===
-Yes (e.g. //X. arboricola, X. axonopodis//, //X. campestris//, //X. citri//, //X. gardneri//, //X. oryzae//, //X. phaseoli//, //X. populi, X. vasicola//, inferred from a BlastP search for a query coverage higher than 90% and an identity percentage over 35%). 
  
 +Yes (e.g. //X. arboricola, X. axonopodis//, //X. campestris//, //X. citri//, //X. gardneri//, //X. oryzae//, //X. phaseoli//, //X. populi//, //X. vasicola//, //X. bromi//, //X. cucurbitae// inferred from a BlastP search for a query coverage higher than 90% and a percent identity over 35%).
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
 +
 Unknown. Unknown.
  
 ===== References ===== ===== References =====
  
-Akimoto-Tomiyama C //et al//. (2012). XopR, a Type III Effector Secreted by //Xanthomonas oryzae// pv. //oryzae//, Suppresses Microbe-Associated Molecular Pattern-Triggered Immunity in //Arabidopsis thaliana//. Mol. Plant-Microbe Interact. 25: 505-514. DOI: [[https://doi.org/10.1094/mpmi-06-11-0167|10.1094/mpmi-06-11-0167]].+Akimoto-Tomiyama C, Furutani A, Tsuge S, Washington EJ, Nishizawa Y, Minami E, Ochiai H (2012). XopR, a type III effector secreted by //Xanthomonas oryzae// pv. //oryzae//, suppresses microbe-associated molecular pattern-triggered immunity in //Arabidopsis thaliana//. Mol. Plant Microbe Interact. 25: 505-514. DOI: [[https://doi.org/10.1094/mpmi-06-11-0167|10.1094/mpmi-06-11-0167]] 
 + 
 +Furutani A, Nakayama T, Ochiai H, Kaku H, Kubo Y, Tsuge S (2006)Identification of novel HrpXo regulons preceded by two //cis//-acting elements, a plant-inducible promoter box and a −10 box-like sequence, from the genome database of //Xanthomonas oryzae// pv. //oryzae//. FEMS Microbiol. Lett. 259: 133-141. DOI: [[https://doi.org/10.1111/j.1574-6968.2006.00265.x|10.1111/j.1574-6968.2006.00265.x]] 
 + 
 +Furutani A, Takaoka M, Sanada H, Noguchi Y, Oku T, Tsuno K, Ochiai H, Tsuge S (2009). Identification of novel type III secretion effectors in //Xanthomonas oryzae// pv. //oryzae//. Mol. Plant Microbe Interact. 22: 96-106. DOI: [[https://doi.org/10.1094/mpmi-22-1-0096|10.1094/mpmi-22-1-0096]]
  
-Furutani A //et al//. (2006). Identification of novel HrpXo regulons preceded by two cis-acting elements, a plant-inducible promoter box and a −10 box-like sequence, from the genome database of //Xanthomonas oryzae// pv. //oryzae//. FEMS Microbiol. Lett. 259133-141. DOI: [[https://doi.org/10.1111/j.1574-6968.2006.00265.x|10.1111/j.1574-6968.2006.00265.x]].+Kametani-Ikawa Y, Tsuge S, Furutani A, Ochiai H (2011). An H-NS-like protein involved in the negative regulation of //hrp// genes in //Xanthomonas oryzae// pv. //oryzae//. FEMS Microbiol. Lett. 31958-64. DOI: [[https://doi.org/10.1111/j.1574-6968.2011.02266.x|10.1111/j.1574-6968.2011.02266.x]]
  
-Furutani A //et al//. (2009). Identification of Novel Type III Secretion Effectors in //Xanthomonas oryzae// pv. //oryzae//MolPlant-Microbe Interact2296-106. DOI: [[https://doi.org/10.1094/mpmi-22-1-0096|10.1094/mpmi-22-1-0096]].+Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae// pv. //oryzae// requires H-NS-family protein XrvC to regulate virulence during rice infectionFEMS MicrobiolLett363fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]]
  
-Kametani-Ikawa Y //et al//. (2011). An H-NS-like protein involved in the negative regulation of //hrp// genes in //Xanthomonas oryzae// pv. //oryzae//. FEMS MicrobiolLett31958-64. DOI: [[https://doi.org/10.1111/j.1574-6968.2011.02266.x|10.1111/j.1574-6968.2011.02266.x]].+Medina CA, Reyes PA, Trujillo CA, Gonzalez JL, Bejarano DA, Montenegro NA, Jacobs JM, Joe A, Restrepo S, Alfano JR, Bernal A (2018). The role of type III effectors from //Xanthomonas axonopodis// pv. //manihotis// in virulence and suppression of plant immunityMolPlant Pathol19593-606. DOI: [[https://doi.org/10.1111/mpp.12545|10.1111/mpp.12545]]
  
-Medina CA //et al//. (2018). The role of type III effectors from //Xanthomonas axonopodis// pv. //manihotis// in virulence and suppression of plant immunityMol. Plant Pathol19593-606. DOI: [[https://doi.org/10.1111/mpp.12545|10.1111/mpp.12545]].+Verma G, Sharma M, Mondal KK (2018). XopR TTSS-effector regulates //in planta// growth, virulence of Indian strain of //Xanthomonas oryzae// pv. //oryzae// via suppressing reactive oxygen species production and cell wall-associated rice immune responses during blight inductionFunct. Plant Biol45561-574. DOI: [[https://doi.org/10.1071/FP17147|10.1071/FP17147]]
  
-Verma G, Sharma M, Mondal KK (2018). XopR TTSS-effector regulates //in planta// growth, virulence of Indian strain of //Xanthomonas oryzae// pv. //oryzae// via suppressing reactive oxygen species production and cell wall-associated rice immune responses during blight inductionFunctional Plant Biol45561-574. DOI: [[https://doi.org/10.1071/FP17147|10.1071/FP17147]].+Verma G, Mondal KK, Kulshreshtha A, Sharma M (2019). XopR T3SS-effector of //Xanthomonas oryzae// pv. //oryzae// suppresses cell death-mediated plant defense response during bacterial blight development in rice3 Biotech9272. DOI: [[https://doi.org/10.1007/s13205-019-1802-9|10.1007/s13205-019-1802-9]]
  
-Verma G //et al//. (2019). XopR T3SS-effector of //Xanthomonas oryzae// pv. //oryzae// suppresses cell death-mediated plant defense response during bacterial blight development in riceBiotech9272. DOI: [[https://doi.org/10.1007/s13205-019-1802-9|10.1007/s13205-019-1802-9]].+Wang S, Sun J, Fan F, Tan Z, Zou Y, Lu D (2016). //Xanthomonas oryzae// pv. //oryzae// effector, XopR, associates with receptor-like cytoplasmic kinases and suppresses PAMP-triggered stomatal closureSciChina Life Sci. 59897-905. DOI: [[https://doi.org/10.1007/s11427-016-5106-6|10.1007/s11427-016-5106-6]]
  
-Wang S //et al//. (2016). //Xanthomonas oryzae// pv//oryzae// effector, XopR, associates with receptor-like cytoplasmic kinases and suppresses PAMP-triggered stomatal closureScience China Life Sciences, 201659897-905. DOI: [[https://doi.org/10.1007/s11427-016-5106-6|10.1007/s11427-016-5106-6]].+White FF, Potnis N, Jones JB, Koebnik R (2009). The type III effectors of //Xanthomonas//MolPlant Pathol10749-766. DOI: [[https://doi.org/10.1111/j.1364-3703.2009.00590.x|10.1111/j.1364-3703.2009.00590.x]]
  
-White FF //et al//. (2009). The type III effectors of //Xanthomonas//MolPlant Pathol10749-766. DOI: [[https://doi.org/10.1111/j.1364-3703.2009.00590.x|10.1111/j.1364-3703.2009.00590.x]].+Zhao S, Mo WL, Wu F, Tang W, Tang JL, Szurek B, Verdier V, Koebnik R, Feng JX (2013). Identification of non-TAL effectors in //Xanthomonas oryzae// pv//oryzae// Chinese strain 13751 and analysis of their role in the bacterial virulenceWorld JMicrobiol. Biotechnol. 29733-744. DOI: [[https://doi.org/10.1007/s11274-012-1229-5|10.1007/s11274-012-1229-5]] FIXME Information needs to be added to the profile.
  
bacteria/t3e/xopr.1589446680.txt.gz · Last modified: 2020/05/14 10:58 by 127.0.0.1