User Tools

Site Tools


bacteria:t3e:xopr

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopr [2020/06/23 12:21]
jfpothier
bacteria:t3e:xopr [2020/07/09 12:11] (current)
rkoebnik [XopR]
Line 1: Line 1:
 ====== XopR ====== ====== XopR ======
  
-Author: Fernando Tavares\\ +Author: [[https://www.researchgate.net/profile/Fernando_Tavares|Fernando Tavares]]\\ 
-Reviewer: FIXME \\+Reviewer: [[https://www.researchgate.net/profile/Amandine_Cunty|Amandine Cunty]]\\
 Expert reviewer: FIXME Expert reviewer: FIXME
  
 Class: XopR\\ Class: XopR\\
 Family: XopR\\ Family: XopR\\
-Prototype: XopR (//Xanthomonas oryzae// pv. //oryzicola// strain BLS256)\\ +Prototype: XOO4134 (//Xanthomonas oryzae// pv. //oryzae//strain MAFF 311018)\\ 
-RefSeq ID: XopR [[https://www.ncbi.nlm.nih.gov/protein/WP_014505297.1|WP_014505297.1]] (437 aa) 3D structure: Unknown+RefSeq ID: XopR [[https://www.ncbi.nlm.nih.gov/protein/WP_014505297.1|WP_014505297.1]] (437 aa)\\ 
 +3D structure: Unknown
  
 ===== Biological function ===== ===== Biological function =====
Line 21: Line 22:
  
 Functional studies using //hrp//-inducing and non-//hrp//-inducing media and reverse-transcriptase PCR in wild type and Xoo ∆//hrpX// mutants showed that the expression of //xopR// is //hrpX// dependent (Verma //et al//., 2019). These results are indirectly supported by previous findings showing that //X. oryza// pv. //oryza// (Xoo) deficient mutants for //xrvB//, a gene coding for a repressor of //hrp// gene expression, leads to an increase of XopR into plant cells (Kametani-Ikawa //et al//., 2011). Functional studies using //hrp//-inducing and non-//hrp//-inducing media and reverse-transcriptase PCR in wild type and Xoo ∆//hrpX// mutants showed that the expression of //xopR// is //hrpX// dependent (Verma //et al//., 2019). These results are indirectly supported by previous findings showing that //X. oryza// pv. //oryza// (Xoo) deficient mutants for //xrvB//, a gene coding for a repressor of //hrp// gene expression, leads to an increase of XopR into plant cells (Kametani-Ikawa //et al//., 2011).
 +
 +qRT-PCR revealed that transcript levels of 15 out of 18 tested non-TAL effector genes (as well as the regulatory genes //hrpG// and //hrpX//) were significantly reduced in the //Xanthomonas oryzae// pv. //oryzae// Δ//xrvC// mutant compared with those in the wild-type strain PXO99<sup>A</sup>  , but this did not apply to //xopR// (Liu //et al.//, 2016).
 === Phenotypes === === Phenotypes ===
  
-In the last few years a comprehensive body of experimental evidence has been gathered supporting a multiple action of XopR in hampering host plant defenses, namely by fostering bacterial growth //in planta//, and suppressing pathogen-associated molecular patterns (PAMP) triggered host plant immunity (PTI) (Akimoto-Tomiyama //et al//., 2012; Wang //et al//., 2016; Medina //et al//., 2018; Verma //et al//., 2018; Verma //et al//., 2019). In fact, early studies suggested that XopR suppress PAMP-triggered stomatal closure in transgenic //Arabidopsis// expressing XopR (Wang //et al//., 2016). More recently, when compared with a Xoo wild type strain, //xopR// deficient mutants (Xoo ∆x//opR//) infiltrated in rice leaves led to an increase of callose deposits, and a significant higher production of reactive oxygen species (ROS), namely of hydrogen peroxide (H<sub>2</sub> O<sub>2</sub>) and superoxide anion (O<sub>2</sub> <sup>-</sup> ), known as the main components of the plant oxidative burst. Furthermore, reverse transcriptase expression analyses of eight rice genes linked to plant disease resistance (//BRI1//, //GST1//, //PR2//, //PR5//, //RAC1//, //SERK1//, //WRKY29// and //WRKY71//) were shown to be up-regulated in rice leaves inoculated with Xoo ∆x//opR// (Verma //et al//., 2018; Verma //et al//., 2019). To further support these findings, complementation of Xoo ∆x//opR// with //xopR// was able to restore the disease phenotype of the wild type Xoo strain (Verma //et al//., 2018; Verma //et al//., 2019).+In the last few years a comprehensive body of experimental evidence has been gathered supporting a multiple action of XopR in hampering host plant defenses, namely by fostering bacterial growth //in planta//, and suppressing pathogen-associated molecular patterns (PAMP) triggered host plant immunity (PTI) (Akimoto-Tomiyama //et al//., 2012; Wang //et al//., 2016; Medina //et al//., 2018; Verma //et al//., 2018; Verma //et al//., 2019). In fact, early studies suggested that XopR suppress PAMP-triggered stomatal closure in transgenic //Arabidopsis// expressing XopR (Wang //et al//., 2016). More recently, when compared with a Xoo wild type strain, //xopR// deficient mutants (Xoo ∆x//opR//) infiltrated in rice leaves led to an increase of callose deposits, and a significant higher production of reactive oxygen species (ROS), namely of hydrogen peroxide (H<sub>2</sub> O<sub>2</sub>) and superoxide anion (O<sub>2</sub> <sup>-</sup>  ), known as the main components of the plant oxidative burst (reference FIXME ). Furthermore, reverse transcriptase expression analyses of eight rice genes linked to plant disease resistance (//BRI1//, //GST1//, //PR2//, //PR5//, //RAC1//, //SERK1//, //WRKY29// and //WRKY71//) were shown to be up-regulated in rice leaves inoculated with Xoo ∆x//opR// (Verma //et al//., 2018; Verma //et al//., 2019). To further support these findings, complementation of Xoo ∆x//opR// with //xopR// was able to restore the disease phenotype of the wild type Xoo strain (Verma //et al//., 2018; Verma //et al//., 2019).
 === Localization === === Localization ===
  
Line 33: Line 36:
 === Interaction partners === === Interaction partners ===
  
-Co-immunoprecipitation assays indicate that XopR associates with various receptor-like cytoplasmic kinases (RLCKs), including BIK1 known to be involved in pathogen-associated molecular patterns (PAMP) to triggered stomatal closure (Wang //et al//., 2016). //In vitro// kinase assays indicate that XopR is phosphorylate by BIK1 likely affecting BIK1 targets, and possibly impairing PAMP-triggered stomatal immunity (Wang //et al//., 2016).+Co-immunoprecipitation assays indicate that XopR associates with various receptor-like cytoplasmic kinases (RLCKs), including BIK1 known to be involved in pathogen-associated molecular patterns (PAMP) to triggered stomatal closure (Wang //et al//., 2016). //In vitro// kinase assays indicate that XopR is phosphorylated by BIK1 likely affecting BIK1 targets, and possibly impairing PAMP-triggered stomatal immunity (Wang //et al//., 2016).
 ===== Conservation ===== ===== Conservation =====
  
 === In xanthomonads === === In xanthomonads ===
  
-Yes (e.g. //X. arboricola, X. axonopodis//, //X. campestris//, //X. citri//, //X. gardneri//, //X. oryzae//, //X. phaseoli//, //X. populi, X. vasicola//, inferred from a BlastP search for a query coverage higher than 90% and an identity percentage over 35%).+Yes (e.g. //X. arboricola, X. axonopodis//, //X. campestris//, //X. citri//, //X. gardneri//, //X. oryzae//, //X. phaseoli//, //X. populi////X. vasicola//, //X. bromi//, //X. cucurbitae// inferred from a BlastP search for a query coverage higher than 90% and a percent identity over 35%).
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
Line 45: Line 48:
 ===== References ===== ===== References =====
  
-Akimoto-Tomiyama C //et al//. (2012). XopR, a Type III Effector Secreted by //Xanthomonas oryzae// pv. //oryzae//, Suppresses Microbe-Associated Molecular Pattern-Triggered Immunity in //Arabidopsis thaliana//. Mol. Plant-Microbe Interact. 25: 505-514. DOI: [[https://doi.org/10.1094/mpmi-06-11-0167|10.1094/mpmi-06-11-0167]].+Akimoto-Tomiyama C, Furutani A, Tsuge S, Washington EJ, Nishizawa Y, Minami E, Ochiai H (2012). XopR, a type III effector secreted by //Xanthomonas oryzae// pv. //oryzae//, suppresses microbe-associated molecular pattern-triggered immunity in //Arabidopsis thaliana//. Mol. Plant Microbe Interact. 25: 505-514. DOI: [[https://doi.org/10.1094/mpmi-06-11-0167|10.1094/mpmi-06-11-0167]] 
 + 
 +Furutani A, Nakayama T, Ochiai H, Kaku H, Kubo Y, Tsuge S (2006)Identification of novel HrpXo regulons preceded by two //cis//-acting elements, a plant-inducible promoter box and a −10 box-like sequence, from the genome database of //Xanthomonas oryzae// pv. //oryzae//. FEMS Microbiol. Lett. 259: 133-141. DOI: [[https://doi.org/10.1111/j.1574-6968.2006.00265.x|10.1111/j.1574-6968.2006.00265.x]] 
 + 
 +Furutani A, Takaoka M, Sanada H, Noguchi Y, Oku T, Tsuno K, Ochiai H, Tsuge S (2009). Identification of novel type III secretion effectors in //Xanthomonas oryzae// pv. //oryzae//. Mol. Plant Microbe Interact. 22: 96-106. DOI: [[https://doi.org/10.1094/mpmi-22-1-0096|10.1094/mpmi-22-1-0096]]
  
-Furutani A //et al//. (2006). Identification of novel HrpXo regulons preceded by two cis-acting elements, a plant-inducible promoter box and a −10 box-like sequence, from the genome database of //Xanthomonas oryzae// pv. //oryzae//. FEMS Microbiol. Lett. 259133-141. DOI: [[https://doi.org/10.1111/j.1574-6968.2006.00265.x|10.1111/j.1574-6968.2006.00265.x]].+Kametani-Ikawa Y, Tsuge S, Furutani A, Ochiai H (2011). An H-NS-like protein involved in the negative regulation of //hrp// genes in //Xanthomonas oryzae// pv. //oryzae//. FEMS Microbiol. Lett. 31958-64. DOI: [[https://doi.org/10.1111/j.1574-6968.2011.02266.x|10.1111/j.1574-6968.2011.02266.x]]
  
-Furutani A //et al//. (2009). Identification of Novel Type III Secretion Effectors in //Xanthomonas oryzae// pv. //oryzae//MolPlant-Microbe Interact2296-106. DOI: [[https://doi.org/10.1094/mpmi-22-1-0096|10.1094/mpmi-22-1-0096]].+Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae// pv. //oryzae// requires H-NS-family protein XrvC to regulate virulence during rice infectionFEMS MicrobiolLett363fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]]
  
-Kametani-Ikawa Y //et al//. (2011). An H-NS-like protein involved in the negative regulation of //hrp// genes in //Xanthomonas oryzae// pv. //oryzae//. FEMS MicrobiolLett31958-64. DOI: [[https://doi.org/10.1111/j.1574-6968.2011.02266.x|10.1111/j.1574-6968.2011.02266.x]].+Medina CA, Reyes PA, Trujillo CA, Gonzalez JL, Bejarano DA, Montenegro NA, Jacobs JM, Joe A, Restrepo S, Alfano JR, Bernal A (2018). The role of type III effectors from //Xanthomonas axonopodis// pv. //manihotis// in virulence and suppression of plant immunityMolPlant Pathol19593-606. DOI: [[https://doi.org/10.1111/mpp.12545|10.1111/mpp.12545]]
  
-Medina CA //et al//. (2018). The role of type III effectors from //Xanthomonas axonopodis// pv. //manihotis// in virulence and suppression of plant immunityMol. Plant Pathol19593-606. DOI: [[https://doi.org/10.1111/mpp.12545|10.1111/mpp.12545]].+Verma G, Sharma M, Mondal KK (2018). XopR TTSS-effector regulates //in planta// growth, virulence of Indian strain of //Xanthomonas oryzae// pv. //oryzae// via suppressing reactive oxygen species production and cell wall-associated rice immune responses during blight inductionFunct. Plant Biol45561-574. DOI: [[https://doi.org/10.1071/FP17147|10.1071/FP17147]]
  
-Verma G, Sharma M, Mondal KK (2018). XopR TTSS-effector regulates //in planta// growth, virulence of Indian strain of //Xanthomonas oryzae// pv. //oryzae// via suppressing reactive oxygen species production and cell wall-associated rice immune responses during blight inductionFunctional Plant Biol45561-574. DOI: [[https://doi.org/10.1071/FP17147|10.1071/FP17147]].+Verma G, Mondal KK, Kulshreshtha A, Sharma M (2019). XopR T3SS-effector of //Xanthomonas oryzae// pv. //oryzae// suppresses cell death-mediated plant defense response during bacterial blight development in rice3 Biotech9272. DOI: [[https://doi.org/10.1007/s13205-019-1802-9|10.1007/s13205-019-1802-9]]
  
-Verma G //et al//. (2019). XopR T3SS-effector of //Xanthomonas oryzae// pv. //oryzae// suppresses cell death-mediated plant defense response during bacterial blight development in riceBiotech9272. DOI: [[https://doi.org/10.1007/s13205-019-1802-9|10.1007/s13205-019-1802-9]].+Wang S, Sun J, Fan F, Tan Z, Zou Y, Lu D (2016). //Xanthomonas oryzae// pv. //oryzae// effector, XopR, associates with receptor-like cytoplasmic kinases and suppresses PAMP-triggered stomatal closureSciChina Life Sci. 59897-905. DOI: [[https://doi.org/10.1007/s11427-016-5106-6|10.1007/s11427-016-5106-6]]
  
-Wang S //et al//. (2016). //Xanthomonas oryzae// pv//oryzae// effector, XopR, associates with receptor-like cytoplasmic kinases and suppresses PAMP-triggered stomatal closureScience China Life Sciences, 201659897-905. DOI: [[https://doi.org/10.1007/s11427-016-5106-6|10.1007/s11427-016-5106-6]].+White FF, Potnis N, Jones JB, Koebnik R (2009). The type III effectors of //Xanthomonas//MolPlant Pathol10749-766. DOI: [[https://doi.org/10.1111/j.1364-3703.2009.00590.x|10.1111/j.1364-3703.2009.00590.x]]
  
-White FF //et al//. (2009). The type III effectors of //Xanthomonas//MolPlant Pathol10749-766. DOI: [[https://doi.org/10.1111/j.1364-3703.2009.00590.x|10.1111/j.1364-3703.2009.00590.x]].+Zhao S, Mo WL, Wu F, Tang W, Tang JL, Szurek B, Verdier V, Koebnik R, Feng JX (2013). Identification of non-TAL effectors in //Xanthomonas oryzae// pv//oryzae// Chinese strain 13751 and analysis of their role in the bacterial virulenceWorld JMicrobiol. Biotechnol. 29733-744. DOI: [[https://doi.org/10.1007/s11274-012-1229-5|10.1007/s11274-012-1229-5]] FIXME Information needs to be added to the profile.
  
bacteria/t3e/xopr.1592907660.txt.gz · Last modified: 2020/06/23 12:21 by jfpothier