User Tools

Site Tools


bacteria:t3e:xopr

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopr [2020/07/02 16:21]
rkoebnik [References]
bacteria:t3e:xopr [2020/07/09 12:11] (current)
rkoebnik [XopR]
Line 1: Line 1:
 ====== XopR ====== ====== XopR ======
  
-Author: Fernando Tavares\\ +Author: [[https://www.researchgate.net/profile/Fernando_Tavares|Fernando Tavares]]\\ 
-Reviewer: Amandine Cunty\\+Reviewer: [[https://www.researchgate.net/profile/Amandine_Cunty|Amandine Cunty]]\\
 Expert reviewer: FIXME Expert reviewer: FIXME
  
 Class: XopR\\ Class: XopR\\
 Family: XopR\\ Family: XopR\\
-Prototype: XopR (//Xanthomonas oryzae// pv. //oryzicola// strain BLS256)\\ +Prototype: XOO4134 (//Xanthomonas oryzae// pv. //oryzae//strain MAFF 311018)\\ 
-RefSeq ID: XopR [[https://www.ncbi.nlm.nih.gov/protein/WP_014505297.1|WP_014505297.1]] (437 aa) 3D structure: Unknown+RefSeq ID: XopR [[https://www.ncbi.nlm.nih.gov/protein/WP_014505297.1|WP_014505297.1]] (437 aa)\\ 
 +3D structure: Unknown
  
 ===== Biological function ===== ===== Biological function =====
Line 21: Line 22:
  
 Functional studies using //hrp//-inducing and non-//hrp//-inducing media and reverse-transcriptase PCR in wild type and Xoo ∆//hrpX// mutants showed that the expression of //xopR// is //hrpX// dependent (Verma //et al//., 2019). These results are indirectly supported by previous findings showing that //X. oryza// pv. //oryza// (Xoo) deficient mutants for //xrvB//, a gene coding for a repressor of //hrp// gene expression, leads to an increase of XopR into plant cells (Kametani-Ikawa //et al//., 2011). Functional studies using //hrp//-inducing and non-//hrp//-inducing media and reverse-transcriptase PCR in wild type and Xoo ∆//hrpX// mutants showed that the expression of //xopR// is //hrpX// dependent (Verma //et al//., 2019). These results are indirectly supported by previous findings showing that //X. oryza// pv. //oryza// (Xoo) deficient mutants for //xrvB//, a gene coding for a repressor of //hrp// gene expression, leads to an increase of XopR into plant cells (Kametani-Ikawa //et al//., 2011).
 +
 +qRT-PCR revealed that transcript levels of 15 out of 18 tested non-TAL effector genes (as well as the regulatory genes //hrpG// and //hrpX//) were significantly reduced in the //Xanthomonas oryzae// pv. //oryzae// Δ//xrvC// mutant compared with those in the wild-type strain PXO99<sup>A</sup>  , but this did not apply to //xopR// (Liu //et al.//, 2016).
 === Phenotypes === === Phenotypes ===
  
-In the last few years a comprehensive body of experimental evidence has been gathered supporting a multiple action of XopR in hampering host plant defenses, namely by fostering bacterial growth //in planta//, and suppressing pathogen-associated molecular patterns (PAMP) triggered host plant immunity (PTI) (Akimoto-Tomiyama //et al//., 2012; Wang //et al//., 2016; Medina //et al//., 2018; Verma //et al//., 2018; Verma //et al//., 2019). In fact, early studies suggested that XopR suppress PAMP-triggered stomatal closure in transgenic //Arabidopsis// expressing XopR (Wang //et al//., 2016). More recently, when compared with a Xoo wild type strain, //xopR// deficient mutants (Xoo ∆x//opR//) infiltrated in rice leaves led to an increase of callose deposits, and a significant higher production of reactive oxygen species (ROS), namely of hydrogen peroxide (H<sub>2</sub> O<sub>2</sub>) and superoxide anion (O<sub>2</sub> <sup>-</sup> ), known as the main components of the plant oxidative burst (reference FIXME). Furthermore, reverse transcriptase expression analyses of eight rice genes linked to plant disease resistance (//BRI1//, //GST1//, //PR2//, //PR5//, //RAC1//, //SERK1//, //WRKY29// and //WRKY71//) were shown to be up-regulated in rice leaves inoculated with Xoo ∆x//opR// (Verma //et al//., 2018; Verma //et al//., 2019). To further support these findings, complementation of Xoo ∆x//opR// with //xopR// was able to restore the disease phenotype of the wild type Xoo strain (Verma //et al//., 2018; Verma //et al//., 2019).+In the last few years a comprehensive body of experimental evidence has been gathered supporting a multiple action of XopR in hampering host plant defenses, namely by fostering bacterial growth //in planta//, and suppressing pathogen-associated molecular patterns (PAMP) triggered host plant immunity (PTI) (Akimoto-Tomiyama //et al//., 2012; Wang //et al//., 2016; Medina //et al//., 2018; Verma //et al//., 2018; Verma //et al//., 2019). In fact, early studies suggested that XopR suppress PAMP-triggered stomatal closure in transgenic //Arabidopsis// expressing XopR (Wang //et al//., 2016). More recently, when compared with a Xoo wild type strain, //xopR// deficient mutants (Xoo ∆x//opR//) infiltrated in rice leaves led to an increase of callose deposits, and a significant higher production of reactive oxygen species (ROS), namely of hydrogen peroxide (H<sub>2</sub> O<sub>2</sub>) and superoxide anion (O<sub>2</sub> <sup>-</sup>  ), known as the main components of the plant oxidative burst (reference FIXME ). Furthermore, reverse transcriptase expression analyses of eight rice genes linked to plant disease resistance (//BRI1//, //GST1//, //PR2//, //PR5//, //RAC1//, //SERK1//, //WRKY29// and //WRKY71//) were shown to be up-regulated in rice leaves inoculated with Xoo ∆x//opR// (Verma //et al//., 2018; Verma //et al//., 2019). To further support these findings, complementation of Xoo ∆x//opR// with //xopR// was able to restore the disease phenotype of the wild type Xoo strain (Verma //et al//., 2018; Verma //et al//., 2019).
 === Localization === === Localization ===
  
Line 64: Line 67:
  
 White FF, Potnis N, Jones JB, Koebnik R (2009). The type III effectors of //Xanthomonas//. Mol. Plant Pathol. 10: 749-766. DOI: [[https://doi.org/10.1111/j.1364-3703.2009.00590.x|10.1111/j.1364-3703.2009.00590.x]] White FF, Potnis N, Jones JB, Koebnik R (2009). The type III effectors of //Xanthomonas//. Mol. Plant Pathol. 10: 749-766. DOI: [[https://doi.org/10.1111/j.1364-3703.2009.00590.x|10.1111/j.1364-3703.2009.00590.x]]
 +
 +Zhao S, Mo WL, Wu F, Tang W, Tang JL, Szurek B, Verdier V, Koebnik R, Feng JX (2013). Identification of non-TAL effectors in //Xanthomonas oryzae// pv. //oryzae// Chinese strain 13751 and analysis of their role in the bacterial virulence. World J. Microbiol. Biotechnol. 29: 733-744. DOI: [[https://doi.org/10.1007/s11274-012-1229-5|10.1007/s11274-012-1229-5]] FIXME Information needs to be added to the profile.
  
bacteria/t3e/xopr.1593699673.txt.gz · Last modified: 2020/07/02 16:21 by rkoebnik