User Tools

Site Tools


plant:cassava

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
plant:cassava [2020/06/15 15:25]
rkoebnik [References]
plant:cassava [2020/07/03 10:11] (current)
rkoebnik
Line 1: Line 1:
 ====== Cassava (//Manihot esculenta//) ====== ====== Cassava (//Manihot esculenta//) ======
  
-Author: Roland Kölliker\\ +Author: [[https://www.researchgate.net/profile/Roland_Koelliker|Roland Kölliker]]\\ 
-Internal reviewer: Massimiliano Morelli\\+Internal reviewer: [[https://www.researchgate.net/profile/Massimiliano_Morelli|Massimiliano Morelli]]\\
 Expert reviewer: FIXME Expert reviewer: FIXME
  
Line 92: Line 92:
  
 //NA// //NA//
- 
 === Source === === Source ===
  
-Cassava (Li //et al.//, 2017b). +Cassava (Li //et al.//, 2017a).
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
  
-Sequenced (Li //et al.//, 2017b). +Sequenced (Li //et al.//, 2017a).
 === Molecular markers === === Molecular markers ===
  
 //NA// //NA//
- 
 === Brief description === === Brief description ===
  
-//Arabidopsis MeBIK1// overexpression lines //OX1// demonstrated a strong resistance to //Xpm// strain HN01 (Li //et al//., 2017b).+//Arabidopsis MeBIK1// overexpression lines //OX1// demonstrated a strong resistance to //Xpm// strain HN01 (Li //et al//., 2017a).
  
 ---- ----
Line 116: Line 112:
  
 //NA// //NA//
- 
 === Source === === Source ===
  
-Cassava cultivar South China 124 (Li //et al.//, 2017a). +Cassava cultivar South China 124 (Li //et al.//, 2017b).
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
  
-Sequenced (Li //et al.//, 2017a). +Sequenced (Li //et al.//, 2017b).
 === Molecular markers === === Molecular markers ===
  
 //NA// //NA//
- 
 === Brief description === === Brief description ===
  
-//MebZIP3// and //MebZIP5// conferred improved disease resistance against cassava bacterial blight, with more callose depositions (Li //et al.//, 2017a).+//MebZIP3// and //MebZIP5// conferred improved disease resistance against cassava bacterial blight, with more callose depositions (Li //et al.//, 2017b).
  
 ---- ----
Line 140: Line 132:
  
 //NA// //NA//
- 
 === Source === === Source ===
  
 Cassava cultivas South China 124 (Li //et al.//, 2018). Cassava cultivas South China 124 (Li //et al.//, 2018).
- 
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
  
 Sequenced (Li //et al.//, 2018). Sequenced (Li //et al.//, 2018).
- 
 === Molecular markers === === Molecular markers ===
  
 //NA// //NA//
- 
 === Brief description === === Brief description ===
  
Line 164: Line 152:
  
 //NA// //NA//
- 
 === Source === === Source ===
  
 Cassava cultivar MCOL22 (Pereira //et al.//, 2003). Cassava cultivar MCOL22 (Pereira //et al.//, 2003).
- 
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
  
 Sequenced (Pereira //et al.//, 2003). Sequenced (Pereira //et al.//, 2003).
- 
 === Molecular markers === === Molecular markers ===
  
 //NA// //NA//
- 
 === Brief description === === Brief description ===
  
Line 188: Line 172:
  
 //NA// //NA//
- 
 === Source === === Source ===
  
 Cassava F1 mapping population, derived from a cross between cultivar TMS30572 and cultivar CM2177-2 (Fregene //et al.//, 1997). Cassava F1 mapping population, derived from a cross between cultivar TMS30572 and cultivar CM2177-2 (Fregene //et al.//, 1997).
- 
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
  
 Mapped (Soto //et al.//, 2017). Mapped (Soto //et al.//, 2017).
- 
 === Molecular markers === === Molecular markers ===
  
 Various defence related candidate genes (Soto //et al.//, 2017). Various defence related candidate genes (Soto //et al.//, 2017).
- 
 === Brief description === === Brief description ===
  
Line 212: Line 192:
  
 //NA// //NA//
- 
 === Source === === Source ===
  
 Cassava cultivar South China 124 (Wei //et al.//, 2018a). Cassava cultivar South China 124 (Wei //et al.//, 2018a).
- 
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
  
 Sequenced (Wei //et al.//, 2018a). Sequenced (Wei //et al.//, 2018a).
- 
 === Molecular markers === === Molecular markers ===
  
 //NA// //NA//
- 
 === Brief description === === Brief description ===
  
Line 236: Line 212:
  
 //NA// //NA//
- 
 === Source === === Source ===
  
 Cassava cultivar South China 124 (Wei //et al.//, 2018). Cassava cultivar South China 124 (Wei //et al.//, 2018).
- 
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
  
 Sequenced (Wei //et al.//, 2018). Sequenced (Wei //et al.//, 2018).
- 
 === Molecular markers === === Molecular markers ===
  
 //NA// //NA//
- 
 === Brief description === === Brief description ===
  
Line 260: Line 232:
  
 //NA// //NA//
- 
 === Source === === Source ===
  
 Cassava cultivar South China 124 (Yan //et al.//, 2017). Cassava cultivar South China 124 (Yan //et al.//, 2017).
- 
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
  
 Sequenced (Yan //et al.//, 2017). Sequenced (Yan //et al.//, 2017).
- 
 === Molecular markers === === Molecular markers ===
  
 //NA// //NA//
- 
 === Brief description === === Brief description ===
  
Line 289: Line 257:
 Diaz-Tatis PA, Ochoa JC, Garcia L, Chavarriaga P, Bernal AJ, López CE (2019). Interfamily transfer of //Bs2// from pepper to cassava (//Manihot esculenta// Crantz). Tropical Plant Pathol. 44: 225-237. DOI: [[https://doi.org/10.1007/s40858-019-00279-y|10.1007/s40858-019-00279-y]] Diaz-Tatis PA, Ochoa JC, Garcia L, Chavarriaga P, Bernal AJ, López CE (2019). Interfamily transfer of //Bs2// from pepper to cassava (//Manihot esculenta// Crantz). Tropical Plant Pathol. 44: 225-237. DOI: [[https://doi.org/10.1007/s40858-019-00279-y|10.1007/s40858-019-00279-y]]
  
-Fregene M, Angel F, Gómez R, Rodr'iguez F, Chavarriaga P, Roca W, //et al//. (1997). A molecular genetic map of cassava (//Manihot esculenta// Crantz). Theor. Appl. Genet. 95431441. DOI: [[https://doi.org/10.1007/s001220050580|10.1007/s001220050580]].+Fregene M, Angel F, Gómez R, Rodriguez F, Chavarriaga P, Roca W, Tohme J, Bonierbale M (1997). A molecular genetic map of cassava (//Manihot esculenta// Crantz). Theor. Appl. Genet. 95431-441. DOI: [[https://doi.org/10.1007/s001220050580|10.1007/s001220050580]]
  
-Jorge V, Fregene MA, Duque MC, Bonierbale MW, Tohme J, Verdier V (2000). Genetic mapping of resistance to bacterial blight disease in cassava (//Manihot esculenta// Crantz). Theor. Appl. Genet. 101:865872. DOI: [[https://doi.org/10.1007/s001220051554|10.1007/s001220051554]].+Jorge V, Fregene MA, Duque MC, Bonierbale MW, Tohme J, Verdier V (2000). Genetic mapping of resistance to bacterial blight disease in cassava (//Manihot esculenta// Crantz). Theor. Appl. Genet. 101: 865-872. DOI: [[https://doi.org/10.1007/s001220051554|10.1007/s001220051554]]
  
-Li X, Fan S, Hu W //et al//. (2017a). Two cassava basic leucine zipper (bZIP) transcription factors (MebZIP3 and MebZIP5) confer disease resistance against Cassava Bacterial BlightFront. Plant Sci(2017a) DOI: [[https://doi.org/10.3389/fpls.2017.02110|10.3389/fpls.2017.02110]].+Li K, Xiong X, Zhu S, Liao H, Xiao X, Tang Z, Hong Y, Li C, Luo L, Zheng L, Niu X, Chen Y (2017a). MeBIK1, a novel cassava receptor-like cytoplasmic kinase, regulates PTI response of transgenic //Arabidopsis//Funct. Plant Biol. 45: 658-667. DOI: [[https://doi.org/10.1071/FP17192|10.1071/FP17192]]
  
-Li K, Xion X, Zhu //et al//. (2017b). MeBIK1, a novel cassava receptor-like cytoplasmic kinase, regulates PTI response of transgenic //Arabidopsis//Funct. Plant Biol(2017b) 45658-667. DOI: [[https://doi.org/10.1071/FP17192|10.1071/FP17192]].+Li X, Fan S, Hu W, Liu G, Wei Y, He C, Shi H (2017b). Two cassava basic leucine zipper (bZIP) transcription factors (MebZIP3 and MebZIP5) confer disease resistance against cassava bacterial blightFront. Plant Sci82110. DOI: [[https://doi.org/10.3389/fpls.2017.02110|10.3389/fpls.2017.02110]]
  
-Li X, Liu W, Li B //et al//. (2018). Identification and functional analysis of cassava DELLA proteins in plant disease resistance against cassava bacterial blight. Plant Physiol. Biochem. 124: 70-76. DOI: [[https://doi.org/10.1016/j.plaphy.2017.12.022|10.1016/j.plaphy.2017.12.022]].+Li X, Liu W, Li B, Liu G, Wei Y, He C, Shi H (2018). Identification and functional analysis of cassava DELLA proteins in plant disease resistance against cassava bacterial blight. Plant Physiol. Biochem. 124: 70-76. DOI: [[https://doi.org/10.1016/j.plaphy.2017.12.022|10.1016/j.plaphy.2017.12.022]]
  
-Pereira LF, Goodwin PH, Erickson L (2003). Cloning of a peroxidase gene from cassava with potential as a molecular marker for resistance to bacterial blight. Braz. Arch. Biol. Technol. 46: 149-154. DOI: [[http://dx.doi.org/10.1590/S1516-89132003000200002|10.1590/S1516-89132003000200002]].+Pereira LF, Goodwin PH, Erickson L (2003). Cloning of a peroxidase gene from cassava with potential as a molecular marker for resistance to bacterial blight. Braz. Arch. Biol. Technol. 46: 149-154. DOI: [[http://dx.doi.org/10.1590/S1516-89132003000200002|10.1590/S1516-89132003000200002]]
  
-Soto Sedana JC, Mora Moreno RE, Mathew B //et al//. (2017). Major Novel QTL for resistance to Cassava Bacterial Blight identified through a multi-environmental analysis. Front. Plant Sci. 8: 1169. DOI: [[https://doi.org/10.3389/fpls.2017.01169|10.3389/fpls.2017.01169]].+Soto Sedano JC, Mora Moreno RE, Mathew B, Léon J, Gómez Cano FA, Ballvora A, López Carrascal CE (2017). Major novel QTL for resistance to cassava bacterial blight identified through a multi-environmental analysis. Front. Plant Sci. 8: 1169. DOI: [[https://doi.org/10.3389/fpls.2017.01169|10.3389/fpls.2017.01169]]
  
-Tai TH, Dahlbeck D, Clark ET, //et al//. (1999). Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc. Natl. Acad. Sci. USA96(24):14153‐14158. DOI: [[https://doi.org/10.1073/pnas.96.24.14153|10.1073/pnas.96.24.14153]].+Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz BJ (1999). Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc. Natl. Acad. Sci. USA 96: 14153‐14158. DOI: [[https://doi.org/10.1073/pnas.96.24.14153|10.1073/pnas.96.24.14153]]
  
-Wei Y, Chang Y, Zeng H //et al//. (2018a). RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes. J. Pineal Res. 64: e12454. DOI: [[https://doi.org/10.1111/jpi.12454|10.1111/jpi.12454]].+Wei Y, Chang Y, Zeng H, Liu G, He C, Shi H (2018a). RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes. J. Pineal Res. 64: e12454. DOI: [[https://doi.org/10.1111/jpi.12454|10.1111/jpi.12454]]
  
-Wei Y, Liu G, Chang Y (2018b). Heat shock transcription factor 3 regulates plant immune response through modulation of salicylic acid accumulation and signalling in cassava. Mol. Plant Pathol. 19: 2209-2220. DOI: [[https://dx.doi.org/10.1111/mpp.12691|10.1111/mpp.12691]].+Wei Y, Liu G, Chang Y (2018b). Heat shock transcription factor 3 regulates plant immune response through modulation of salicylic acid accumulation and signalling in cassava. Mol. Plant Pathol. 19: 2209-2220. DOI: [[https://dx.doi.org/10.1111/mpp.12691|10.1111/mpp.12691]]
  
-Yan Y, Wang P, He C, Shi H (2017). MeWRKY20 and its interacting and activating autophagy-related protein 8 (MeATG8) regulate plant disease resistance in cassava. Biochem. Biophys. Res. Commun. 494: 20-26. DOI: [[https://doi.org/10.1016/j.bbrc.2017.10.091|10.1016/j.bbrc.2017.10.091]].+Yan Y, Wang P, He C, Shi H (2017). MeWRKY20 and its interacting and activating autophagy-related protein 8 (MeATG8) regulate plant disease resistance in cassava. Biochem. Biophys. Res. Commun. 494: 20-26. DOI: [[https://doi.org/10.1016/j.bbrc.2017.10.091|10.1016/j.bbrc.2017.10.091]]
  
-Zeng H, Xie Y, Liu G //et al//. (2018). Molecular identification of GAPDHs in cassava highlights the antagonism of MeGAPCs and MeATG8s in plant disease resistance against cassava bacterial blight. Plant Mol. Biol. 97: 201-214. DOI: [[https://doi.org/10.1007/s11103-018-0733-x|10.1007/s11103-018-0733-x]].+Zeng H, Xie Y, Liu G, Lin D, He C, Shi H (2018). Molecular identification of GAPDHs in cassava highlights the antagonism of MeGAPCs and MeATG8s in plant disease resistance against cassava bacterial blight. Plant Mol. Biol. 97: 201-214. DOI: [[https://doi.org/10.1007/s11103-018-0733-x|10.1007/s11103-018-0733-x]]
  
plant/cassava.1592227508.txt.gz · Last modified: 2020/06/15 15:25 by rkoebnik