User Tools

Site Tools


bacteria:t3e:xopad

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopad [2020/06/10 11:36]
rkoebnik [References]
— (current)
Line 1: Line 1:
-====== XopAD ====== 
- 
-Author: David Studholme\\ 
-Internal reviewer: Laurent Noël\\ 
-Expert reviewer: FIXME 
- 
-Class: XopAD\\ 
-Family: XopAD\\ 
-Prototype: XopAD (//Xanthomonas euvesicatoria// pv. //euvesicatoria// aka //Xanthomonas campestris// pv. //vescicatoria//; strain 85-10)\\ 
-RefSeq ID: not found in RefSeq. GenBank accession: [[https://www.ncbi.nlm.nih.gov/protein/CAJ26046.1|CAJ26046.1]] (614 aa)\\ 
-3D structure: Unknown 
- 
-===== Biological function ===== 
- 
-=== How discovered? === 
- 
-XopAD was discovered using a machine-learning approach (Teper //et al//., 2016). 
-=== (Experimental) evidence for being a T3E === 
- 
-XopAD fused to the AvrBs2 reporter domain, was shown to translocate into plant cells in an //hrpF//-dependent manner. 
-=== Regulation === 
- 
-Not known. No PIP box was found in the promoter region of //xopAD// in //X. euvesicatoria// strain 85-10 (Teper //et al//., 2016). 
-=== Phenotypes === 
- 
-Deletion of //xopAD// does not alter //X. citri// pv. //citri// (//Xci//) pathogenicity (Escalon //et al//., 2013). 
-=== Localization === 
- 
-Unknown. 
- 
-=== Enzymatic function === 
- 
-Not known. However, the 614 amino acid protein consists of multiple [[https://www.ebi.ac.uk/interpro/beta/entry/InterPro/IPR011989/|armadillo repeats]] of semi-conserved 42 amino acids. The C-terminal domain, which is absent in //Xcv// 85-10 XopAD but present in the ~2880 amino acid homologues (see below), encodes a putative RelA-like nucleotidyltransferase domain (Teper //et al//., 2016). 
-=== Interaction partners === 
- 
-Not known. 
- 
-===== Conservation ===== 
- 
-=== In xanthomonads === 
- 
-Yes. XopAD has homologues encoded in the genomes of most  //Xanthomonas// species (Teper //et al//., 2016), including //X. axonopodis// (Harrison & Studholme, 2014), //X. vasicola// (Studholme //et al//., 2010; Wasukira //et al//., 2012), //X. nasturtii// (Vicente //et al//., 2010), //X. citri// (Escalon //et al//., 2013). In this respect, //Xanthomonas campestris// appear to be an exception. Escalon and colleagues state “// The analysis of// xopAD //and// xopAG //suggested horizontal transfer between// X. citri //pv.// bilvae//, another citrus pathogen, and some// Xci //strains//” (Escalon //et al//., 2013). The prototype sequence from //X. euvesicatoria// strain 85-10 (Teper //et al//., 2016) is 614 amino acids in length and marked in GenBank as a fragment. Homologues in other genomes of this species range from 2840 (RefSeq: [[https://www.ncbi.nlm.nih.gov/protein/WP_046939801.1|WP_046939801.1]]) to 2885 (RefSeq: [[https://www.ncbi.nlm.nih.gov/protein/WP_033837371.1|WP_033837371.1]]) amino acids in length and the authors of the prototype study state: “//we hypothesize that the ORFs annotated as XCV1197 (XopAV) and XCV1198, and XCV4315 (XopAD), XCV4314 and XCV4313, were originally two complete ORFs that were later truncated by the introduction of early stop codons//” (Teper //et al//., 2016). Therefore, the full-length homologues found in other genomes might not be functionally equivalent to the prototype XopAD. The introduction of early stop codons is explained by presence of an ISXac5-related insertion sequence (Escalon //et al//., 2013). 
-=== In other plant pathogens/symbionts === 
- 
-Yes. XopAD is homologous to members of the RipS1 family of effectors in //Ralstonia solanacearum// (Peeters //et al//., 2013). 
-===== References ===== 
- 
-Escalon A //et al.// (2013). Variations in type III effector repertoires, pathological phenotypes and host range of //Xanthomonas citri// pv. //citri// pathotypes. Mol. Plant Pathol. 14, 483–496. DOI: [[https://doi.org/10.1111/mpp.12019|10.1111/mpp.12019]]. 
- 
-Harrison J & Studholme DJ (2014). Draft genome sequence of //Xanthomonas axonopodis// pathovar //vasculorum// NCPPB 900. FEMS Microbiol. Lett. 360: 113–116. DOI: [[https://doi.org/10.1111/1574-6968.12607|10.1111/1574-6968.12607]]. 
- 
-Peeters N //et al.// (2013). Repertoire, unified nomenclature and evolution of the Type III effector gene set in the //Ralstonia solanacearum// species complex. BMC Genomics 14: 859. DOI: [[https://doi.org/10.1186/1471-2164-14-859|10.1186/1471-2164-14-859]]. 
- 
-Studholme DJ //et al.// (2010). Genome-wide sequencing data reveals virulence factors implicated in banana //Xanthomonas// wilt. FEMS Microbiol. Lett. 310: 182–192. DOI: [[https://doi.org/10.1111/j.1574-6968.2010.02065.x|10.1111/j.1574-6968.2010.02065.x]]. 
- 
-Teper D //et al.// (2016). Identification of novel //Xanthomonas euvesicatoria// type III effector proteins by a machine-learning approach. Mol. Plant Pathol. 17: 398–411. DOI: [[https://doi.org/10.1111/mpp.12288|10.1111/mpp.12288]]. 
- 
-Vicente JG, Rothwell S, Holub EB, Studholme DJ (2017). Pathogenic, phenotypic and molecular characterisation of //Xanthomonas nasturtii// sp. nov. and //Xanthomonas floridensis// sp. nov., new species of //Xanthomonas// associated with watercress production in Florida. Int. J. Syst. Evol. Microbiol. 67: 3645–3654. DOI: [[https://doi.org/10.1099/ijsem.0.002189|10.1099/ijsem.0.002189]]. 
- 
-Wasukira A, Tayebwa J, Thwaites R, Paszkiewicz K, Aritua V, Kubiriba J, Smith J, Grant M, Studholme DJ (2012). Genome-wide sequencing reveals two major sub-lineages in the genetically monomorphic pathogen //Xanthomonas campestris// pathovar //musacearum//. Genes (Basel) 3: 361–377. DOI: [[https://doi.org/10.3390/genes3030361|10.3390/genes3030361]]. 
  
bacteria/t3e/xopad.1591781775.txt.gz · Last modified: 2020/06/10 11:36 by rkoebnik