User Tools

Site Tools


bacteria:t3e:xopk

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopk [2020/07/08 19:27]
rkoebnik old revision restored (2020/07/08 19:21)
— (current)
Line 1: Line 1:
-===== Biological function ===== 
- 
-=== How discovered? === 
- 
-XopK was discovered using a machine-learning approach (Furutani //et al//., 2006). 
-=== (Experimental) evidence for being a T3E === 
- 
-Mutation of a putative ubiquitin-conjugation enzyme (E2) binding site abolished XopK-induced degradation of rice somatic receptor kinase 2 (OsSERK2) and compromised XopK-dependent virulence (Qin //et al//., 2018). 
-=== Regulation === 
- 
-Preceded by both a PIP box and a -10 box-like motif (Schulze //et al//., 2012; Furutani //et al//., 2006). 
- 
-qRT-PCR revealed that transcript levels of 15 out of 18 tested non-TAL effector genes (as well as the regulatory genes //hrpG// and //hrpX//), including //xopK//, were significantly reduced in the //Xanthomonas oryzae// pv. //oryzae// Δ//xrvC// mutant compared with those in the wild-type strain PXO99<sup>A</sup>  (Liu //et al.//, 2016). 
-=== Phenotypes === 
- 
-  * Deletion of XopK has been shown not to affect the virulence of //X. oryzae//  pv. //oryzae//  PXO99A in rice IR24 plants; these differential results could be attributed to different genotypes of the rice cultivar or field conditions for plant growth (Song & Yang, 2010). 
-  * A ∆//xopK//  mutant strain of //Xanthomonas phaseoli//  pv. //manihotis//  (aka //Xanthomonas axonopodis//  pv. //manihotis//) exhibited enhanced induction of disease symptoms in cassava at the site of inoculation but reduced spread through the vasculature (Mutka //et al.//, 2016). 
-  * XopK inhibits pathogen-associated molecular pattern-triggered immunity upstream of mitogen-activated protein kinase cascades (Qin //et al.//, 2018) 
- 
-=== Localization === 
- 
-The XopK sequence contains 54% hydrophobic residues and several predicted transmembrane domains. Thus, it is possible this protein is associated with host cell membranes following secretion (Mutka //et al//., 2016) 
- 
-=== Enzymatic function === 
- 
-The protein has E3 ubiquinol ligase activity. The putative E2-binding site is highly conserved in the majority of members from different //Xanthomonas//  strains except for //X. oryzae//  pv. oryzicola strains (W420C). 
- 
-=== Interaction partners === 
- 
-XopK interacted with and directly ubiquitinated rice somatic embryogenic receptor kinase 2 (OsSERK2), resulting in its degradation (Qin //et al//., 2018) 
- 
-===== Conservation ===== 
- 
-=== In xanthomonads === 
- 
-Yes (based on EDGAR; e.g., //X. oryzae//  pvs. oryzae and oryzicola, //X. citri//  pvs. citri, malvacearum, fuscans and glycines, //X. euvesicatoria//, //X. perforans//, //X. campestris//, //X. cynarae//  pv. gardneri, //X. fragariae//, //X. translucens//, //X. vesicatoria//). In addition to the taxa above, BLAST against the GenBank nt database also shows matches to// X. arboricola, X. hortorum, X. hyacinthi//. 
- 
-=== In other plant pathogens/symbionts === 
- 
-Yes (e.g., //Acidovorax//  spp. with 42% AAI). BLAST against GenBank nt DB suggests that //Acidovorax s//pp. is the only group in which this gene may be present outside Xanthomonadaceae. 
- 
-===== References ===== 
- 
-Furutani A, Nakayama T, Ochiai H, Kaku H, Kubo Y, Tsuge S (2006). Identification of novel HrpXo regulons preceded by two //cis//-acting elements, a plant-inducible promoter box and a -10 box-like sequence, from the genome database of //Xanthomonas oryzae//  pv. oryzae. FEMS Microbiol. Lett. 259: 133-141. DOI: [[https://doi.org/10.1111/j.1574-6968.2006.00265.x|10.1111/j.1574-6968.2006.00265.x]] 
- 
-Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae//  pv. //oryzae//  requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS Microbiol. Lett. 363: fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]] 
- 
-Mutka AM, Fentress SJ, Sher SW, Berry JC, Pretz C, Nusinow DA, Bart R (2016). Quantitative, image-based phenotyping methods provide insight into spatial and temporal dimensions of plant disease. Plant Physiol. 172: 650-660. DOI: [[https://doi.org/10.1104/pp.16.00984|10.1104/pp.16.00984]] 
- 
-Qin J, Zhou X, Sun L, Wang K, Yang F, Liao H, Rong W, Yin J, Chen H, Chen X, Zhang J (2018). The //Xanthomonas//  effector XopK harbours E3 ubiquitin-ligase activity that is required for virulence. New Phytol. 220: 219-231. DOI: [[https://doi.org/10.1111/nph.15287|10.1111/nph.15287]] 
- 
-Schulze S, Kay S, Büttner D, Egler M, Eschen-Lippold L, Hause G, Krüger A, Lee J, Müller O, Scheel D, Szczesny R, Thieme F, Bonas U (2012). Analysis of new type III effectors from //Xanthomonas//  uncovers XopB and XopS as suppressors of plant immunity. New Phytol. 195: 894-911. DOI: [[https://doi.org/10.1111/j.1469-8137.2012.04210.x|10.1111/j.1469-8137.2012.04210.x]] 
- 
-Song C, Yang B (2010). Mutagenesis of 18 type III effectors reveals virulence function of XopZ<sub>PXO99</sub>  in //Xanthomonas oryzae//  pv. oryzae. Mol. Plant Microbe Interact. 23: 893-902. DOI: [[https://doi.org/10.1094/MPMI-23-7-0893|10.1094/MPMI-23-7-0893]] 
  
bacteria/t3e/xopk.1594229228.txt.gz · Last modified: 2020/07/08 19:27 by rkoebnik