User Tools

Site Tools


bacteria:t3e:xopaw

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
bacteria:t3e:xopaw [2020/06/23 17:28]
monika
bacteria:t3e:xopaw [2022/11/04 18:20]
rkoebnik [XopAW]
Line 2: Line 2:
  
 Author: Yael Helman\\ Author: Yael Helman\\
-Internal reviewer: Monika Kałużna\\ +Internal reviewer: [[https://www.researchgate.net/profile/Monika_Kaluzna|Monika Kałużna]]\\ 
-Expert reviewer: FIXME+Expert reviewer: [[https://www.researchgate.net/profile/Ralf-Koebnik|Ralf Koebnik]]
  
 Class: XopAW\\ Class: XopAW\\
 Family: XopAW\\ Family: XopAW\\
-Prototype: XopAW (XCV3093//Xanthomonas euvesicatoria// pv. //euvesicatoria// aka //Xanthomonas campestris// pv. //vescicatoria//; strain 85-10)\\+Prototype: XCV3093 (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\
 RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/CAJ24824.1|CAJ24824.1]] (221 aa)\\ RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/CAJ24824.1|CAJ24824.1]] (221 aa)\\
 3D structure: Unknown 3D structure: Unknown
Line 15: Line 15:
 === How discovered? === === How discovered? ===
  
-XopAW (XCV3093 in //X. euvesicatoria// 85-10 (was discovered using a machine-learning approach (Teper //et al//., 2016).+XopAW (XCV3093 in //X. euvesicatoria// 85-10was discovered using a machine-learning approachTeper //et al//., 2016).
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-XopAW fused to the AvrBs2 reporterwas shown to translocate into plant cells in an //hrpF//-dependent manner (Teper //et al//., 2016).+XopAW<sub>Xcv</sub> fused to the AvrBs2 reporter without type 3 secretion signal was shown to trigger a hypersensitive response in ECW20R pepper leaves (carrying the //B////s2// resistance gene) in an //hrpF//-dependent manner (Teper //et al//., 2016).
 === Regulation === === Regulation ===
  
Line 25: Line 25:
 === Phenotypes === === Phenotypes ===
  
-A //Xanthomonas euvesicatoria// 85-10 mutant defective in //xopAW// did not exhibit reduced virulence symptoms when inoculated on leaves of susceptible pepper plants, relative to wild-type 85-10 (Teper //et al//., 2016). Additionally, expression in //Arabidopsis// mesophyll protoplasts did not lead to suppression of the PTI-associated responses induced by the bacterial peptide flg22 (Popov //et al//., 2018).+A //Xanthomonas euvesicatoria// 85-10 mutant defective in //xopAW// did not exhibit reduced virulence symptoms when inoculated on leaves of susceptible pepper plants, relative to wild-type 85-10 (Teper //et al//., 2016). Additionally, expression in //Arabidopsis// mesophyll protoplasts did not display any significant effect on suppression of the PTI-associated responses induced by the bacterial peptide flg22 (Popov //et al//., 2018).
 === Localization === === Localization ===
  
Line 41: Line 41:
 === In xanthomonads === === In xanthomonads ===
  
-Yes (//e.g.//, //X////perforans////X//. axonopodis////X//. //citri//, //X////arboricola//, //X////phaseoli//, //X////campestris//, //X//. //sacchari//, //X////hyacinthi//). //+Yes (e.g., //X. arboricola, X. axonopodis, X. citri, X//. //euvesicatoria//, //X. phaseoli//, all above 90% sequence identity; more distant homologs in //X. translucens//, //X. hyacinthi//, //X. bonasiae//, //X. sacchari//)Presence in strains without T3SS (//X. bonasiae//, //X. sacchari//) is atypical for type 3 effectors. 
 +=== In other plant pathogens/symbionts ===
  
-In other plant pathogens/symbionts+Yes (e.g.//, Ralstonia solanacearum, Acidovorax avenae, Pseudomonas syringae, Rhizobium//) (Teper //et al.//, 2016). 
 +===== References =====
  
-Yes //(//e.g.//Ralstonia solanacearumAcidovorax avenaePseudomonas syringae, Rhizobium//)// (Teper //et al//., 2016). //+Popov GFraiture MBrunner FSessa G (2018). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]
  
-**<font 18px/inherit;;inherit;;inherit>References</font>**+Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel //Xanthomonas euvesicatoria// type III effector proteins by a machine-learning approach. Mol. Plant Pathol. 17: 398-411. DOI: [[https://doi.org/10.1111/mpp.12288|10.1111/mpp.12288]]
  
-Popov G, Fraiture M, Brunner F, Sessa G (2018). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant-Microbe Interact. 29(8):651-660. DOI:// [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]. //+===== References =====
  
-Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel //Xanthomonas euvesicatoria// type III effector proteins by a machine-learning approach. //Mol. Plant Pathol. 17(3): 398-411. DOI: [[https://doi.org/10.1111/mpp.12288|10.1111/mpp.12288]]. //+Popov G, Fraiture M, Brunner F, Sessa G (2018). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]] 
 + 
 +Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel //Xanthomonas euvesicatoria// type III effector proteins by a machine-learning approach. Mol. Plant Pathol. 17: 398-411. DOI: [[https://doi.org/10.1111/mpp.12288|10.1111/mpp.12288]]
  
bacteria/t3e/xopaw.txt · Last modified: 2022/11/04 18:20 by rkoebnik