User Tools

Site Tools


bacteria:t3e:xopaw

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopaw [2020/06/23 17:24]
monika
bacteria:t3e:xopaw [2022/11/04 18:20] (current)
rkoebnik [Biological function]
Line 2: Line 2:
  
 Author: Yael Helman\\ Author: Yael Helman\\
-Internal reviewer: Monika Kałużna\\ +Internal reviewer: [[https://www.researchgate.net/profile/Monika_Kaluzna|Monika Kałużna]]\\ 
-Expert reviewer:FIXME+Expert reviewer: [[https://www.researchgate.net/profile/Ralf-Koebnik|Ralf Koebnik]]
  
-[[https://www.ncbi.nlm.nih.gov/protein/CAJ24824.1|Class: XopAW\\ Family: XopAW\\ Prototype: XopAW (XCV3093; //Xanthomonas euvesicatoria// pv. //euvesicatoria// aka //Xanthomonas campestris// pv. //vescicatoria//; strain 85-10)\\ RefSeq ID: CAJ24824.1]] (221 aa)\\+Class: XopAW\\ 
 +Family: XopAW\\ 
 +Prototype: XCV3093 (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\ 
 +RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/CAJ24824.1|CAJ24824.1]] (221 aa)\\
 3D structure: Unknown 3D structure: Unknown
  
Line 12: Line 15:
 === How discovered? === === How discovered? ===
  
-XopAW (XCV3093 in //X. euvesicatoria// 85-10 (was discovered using a machine-learning approach (Teper //et al//., 2016).+XopAW (XCV3093 in //X. euvesicatoria// pv. //euvesicatoria// 85-10was discovered using a machine-learning approachTeper //et al//., 2016).
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-XopAW fused to the AvrBs2 reporterwas shown to translocate into plant cells in an //hrpF//-dependent manner (Teper //et al//., 2016).+XopAW<sub>Xcv</sub> fused to the AvrBs2 reporter without type 3 secretion signal was shown to trigger a hypersensitive response in ECW20R pepper leaves (carrying the //B////s2// resistance gene) in an //hrpF//-dependent manner (Teper //et al//., 2016).
 === Regulation === === Regulation ===
  
Line 22: Line 25:
 === Phenotypes === === Phenotypes ===
  
-A //Xanthomonas euvesicatoria// 85-10 mutant defective in //xopAW// did not exhibit reduced virulence symptoms when inoculated on leaves of susceptible pepper plants, relative to wild-type 85-10 (Teper //et al//., 2016). Additionally, expression in //Arabidopsis// mesophyll protoplasts did not lead to the suppression of the PTI-associated responses induced by the bacterial peptide flg22 (Popov //et al//., 2018).+A //Xanthomonas euvesicatoria// 85-10 mutant defective in //xopAW// did not exhibit reduced virulence symptoms when inoculated on leaves of susceptible pepper plants, relative to wild-type 85-10 (Teper //et al//., 2016). Additionally, expression in //Arabidopsis// mesophyll protoplasts did not display any significant effect on suppression of the PTI-associated responses induced by the bacterial peptide flg22 (Popov //et al//., 2018).
 === Localization === === Localization ===
  
Line 38: Line 41:
 === In xanthomonads === === In xanthomonads ===
  
-Yes (//e.g.//, //X////perforans////X//. axonopodis////X//. //citri//, //X////arboricola//, //X////phaseoli//, //X////campestris//, //X//. //sacchari//, //X////hyacinthi//). //+Yes (e.g., //X. arboricola, X. axonopodis, X. citri, X//. //euvesicatoria//, //X. phaseoli//, all above 90% sequence identity; more distant homologs in //X. translucens//, //X. hyacinthi//, //X. bonasiae//, //X. sacchari//)Presence in strains without T3SS (//X. bonasiae//, //X. sacchari//) is atypical for type 3 effectors. 
 +=== In other plant pathogens/symbionts ===
  
-**In other plant pathogens/symbionts**+Yes (e.g.//, Ralstonia solanacearum, Acidovorax avenae, Pseudomonas syringae, Rhizobium//) (Teper //et al.//, 2016). 
 +===== References =====
  
-//Yes (//e.g.//Ralstonia solanacearumAcidovorax avenaePseudomonas syringae, Rhizobium//)(//Teper //et al//., 2016). //+Popov GFraiture MBrunner FSessa G (2018). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]
  
-<font 18px/inherit;;inherit;;inherit>**References**</font>[[https://doi.org/10.1094/MPMI-07-16-0137-R|Popov GFraiture M, Brunner F, Sessa G (2018). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant-Microbe Interact29(8):651-660. DOI: 10.1094/MPMI-07-16-0137-R]].+Teper D, Burstein D, Salomon DGershovitz M, Pupko T, Sessa G (2016). Identification of novel //Xanthomonas euvesicatoria// type III effector proteins by a machine-learning approach. Mol. Plant Pathol17398-411. DOI: [[https://doi.org/10.1111/mpp.12288|10.1111/mpp.12288]]
  
-Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel //Xanthomonas euvesicatoria// type III effector proteins by a machine-learning approach. Mol. Plant Pathol. 17(3): 398-411. DOI: [[https://doi.org/10.1111/mpp.12288|10.1111/mpp.12288]]. // //+===== References ===== 
 + 
 +Popov G, Fraiture M, Brunner F, Sessa G (2018). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]] 
 + 
 +Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel //Xanthomonas euvesicatoria// type III effector proteins by a machine-learning approach. Mol. Plant Pathol. 17: 398-411. DOI: [[https://doi.org/10.1111/mpp.12288|10.1111/mpp.12288]]
  
bacteria/t3e/xopaw.1592925884.txt.gz · Last modified: 2020/06/23 17:24 by monika