User Tools

Site Tools


bacteria:t3e:xope3

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xope3 [2020/07/03 09:51]
rkoebnik
bacteria:t3e:xope3 [2020/09/21 10:37] (current)
rkoebnik [Biological function]
Line 3: Line 3:
 Author: [[https://www.researchgate.net/profile/Jaime_Cubero|Jaime Cubero]]\\ Author: [[https://www.researchgate.net/profile/Jaime_Cubero|Jaime Cubero]]\\
 Internal reviewer: [[https://www.researchgate.net/profile/Eran_Bosis|Eran Bosis]]\\ Internal reviewer: [[https://www.researchgate.net/profile/Eran_Bosis|Eran Bosis]]\\
-Expert reviewer: FIXME+Expert reviewer: [[http://www.iq.usp.br/setubal|João C. Setubal]]
  
 Class: XopE\\ Class: XopE\\
 Family: XopE3\\ Family: XopE3\\
-Prototype: XAC3224 (//Xanthomonas citri subsp. citri//)\\+Prototype: XAC3224 (//Xanthomonas citri// pv//citri//)\\
 RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011052114.1|WP_011052114.1]] (356 aa)\\ RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011052114.1|WP_011052114.1]] (356 aa)\\
 +Synonym: AvrXacE2 (//Xanthomonas citri //pv. //citri//)\\
 3D structure: Contains a catalytic triad of cysteine, histidine and aspartic acid, and have been grouped with peptide N-glycanases (PNGases, members of the transglutaminase protein superfamily). XopE3 contains N-myristoylation motifs (Dunger //et al//., 2012). 3D structure: Contains a catalytic triad of cysteine, histidine and aspartic acid, and have been grouped with peptide N-glycanases (PNGases, members of the transglutaminase protein superfamily). XopE3 contains N-myristoylation motifs (Dunger //et al//., 2012).
 ===== Biological function ===== ===== Biological function =====
Line 14: Line 15:
 === How discovered? === === How discovered? ===
  
-XopE3 (avrXacE2) was first identified by sequence homology searches (da Silva //et al//., 2002).+The gene coding for XopE3 (avrXacE2) was first identified in the genome annotation of //Xanthomonas citri //subsp. //citri //A306 (da Silva //et al//., 2002).
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-Homology to other XopE effectors.+There is no experimental evidence. It is inferred to be a T3E based on similarity to other XopE effectors.
  
 === Regulation === === Regulation ===
Line 25: Line 26:
  
 Lesions caused by mutants of X. citri on avrXacE2 show more extensive necrotic areas relative to those caused by wild-type bacteria in citrus leaves and grow slowly compared to wild type strain. This protein may function to attenuate cell death. No effect has been revealed on hypersensitive response (HR) on non-host plants (Dunger //et al//., 2012). Lesions caused by mutants of X. citri on avrXacE2 show more extensive necrotic areas relative to those caused by wild-type bacteria in citrus leaves and grow slowly compared to wild type strain. This protein may function to attenuate cell death. No effect has been revealed on hypersensitive response (HR) on non-host plants (Dunger //et al//., 2012).
- 
-Conservation of XopE3 (avrXacE2) in three //Xanthomonas// strains causing Citrus Canker suggest that it may play a special role in citrus canker (Moreira //et al.//, 2010). 
 === Localization === === Localization ===
  
Line 32: Line 31:
 === Enzymatic function === === Enzymatic function ===
  
-XopE3 belongs to the HopX effector family, which are part of the transglutaminase superfamily (Nimchuk //et al//., 2007).+XopE3 belongs to the HopX effector family, which is part of the transglutaminase superfamily (Nimchuk //et al//., 2007).
 === Interaction partners === === Interaction partners ===
  
-Not known.+In //X. citri //subsp. //citri //A306 the gene coding for XopE3 is in a region hypothesized to be a genomic island (Moreira //et al.//, 2010). This region or parts of it are conserved in many Xanthomonas strains, as shown by a genomic neighborhood search in the Integrated Microbial Genomes platform. In particular, in this search gene XAC3225 is nearly always adjacent to XAC3224 (//xopE3//), suggesting that the protein coded by XAC3225 is an interaction partner of XopE3. Moreira //et al.// (2010) commented on this as follows: "Next to //xopE3// (XAC3224) we find gene XAC3225, whose product is annotated as tranglycosylase //mltB//. This gene has strong similarity (e-value 10<sup>-133</sup>  , 100% coverage) to //hopAJ1// from //P. syringae// pv. //tomato// strain DC3000, where it is annotated as a T3SS helper protein. Although the //hopAJ1// gene is not itself a T3SS substrate, it contributes to effector translocation (Oh //et al.//, 2007). A mutant with a deletion of XAC3225 has reduced ability to cause canker (mutant phenotypes include a reduction in water soaking, hyperplasia, and necrosis compared to wild type) (Laia //et al.//, 2009)".
  
 ===== Conservation ===== ===== Conservation =====
Line 41: Line 40:
 === In xanthomonads === === In xanthomonads ===
  
-Yes (//e.g.//, //X. citri, X. arboricolaX axonopodis//).+Yes (//e.g.//, //X. citri, X. arboricolaXaxonopodis//).
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
Line 47: Line 46:
 ===== References ===== ===== References =====
  
-da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira, MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA,Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos SM, Truffi D, Tsai, SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two //Xanthomonas// pathogens with differing host specificities. Nature 417: 459-463. DOI: [[https://doi.org/10.1038/417459a|10.1038/417459a]].+da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira, MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA,Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos SM, Truffi D, Tsai, SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two //Xanthomonas// pathogens with differing host specificities. Nature 417: 459-463. DOI: [[https://doi.org/10.1038/417459a|10.1038/417459a]] 
 + 
 +Dunger G, Garofalo CG, Gottig N, Garavaglia BS, Rosa MC, Farah CS, Orellano EG, Ottado J (2012)Analysis of three //Xanthomonas axonopodis// pv. citri effector proteins in pathogenicity and their interactions with host plant proteins. Mol. Plant Pathol. 13: 865-876. DOI: [[https://doi.org/10.1111/j.1364-3703.2012.00797.x|10.1111/j.1364-3703.2012.00797.x]] 
 + 
 +Guo Y, Figueiredo F, Jones J, Wang N (2011). HrpG and HrpX play global roles in coordinating different virulence traits of //Xanthomonas axonopodis// pv. citri. Mol Plant Microbe Interact. 24: 649-661. DOI: [[https://doi.org/10.1094/MPMI-09-10-0209|10.1094/MPMI-09-10-0209]]
  
-Dunger GGarofalo CGGottig NGaravaglia BSRosa MCFarah CSOrellano EGOttado J (2012). Analysis of three //Xanthomonas axonopodis// pv. citri effector proteins in pathogenicity and their interactions with host plant proteins. MolPlant Pathol13865-876. DOI: [[https://doi.org/10.1111/j.1364-3703.2012.00797.x|10.1111/j.1364-3703.2012.00797.x]].+Laia MLMoreira LMDezajacomo JBrigati JBFerreira CBFerro MISilva ACFerro JA, Oliveira JC (2009). New genes of //Xanthomonas citri// subsp//citri// involved in pathogenesis and adaptation revealed by a transposon-based mutant libraryBMC Microbiol2009, 912. DOI: [[https://doi.org/10.1186/1471-2180-9-12|10.1186/1471-2180-9-12]]
  
-Guo YFigueiredo FJones J, Wang N (2011). HrpG and HrpX play global roles in coordinating different virulence traits of //Xanthomonas axonopodis// pvcitriMol Plant Microbe Interact. 24649-661. DOI: [[https://doi.org/10.1094/MPMI-09-10-0209|10.1094/MPMI-09-10-0209]].+Moreira LMAlmeida NFPotnis N, Digiampietri LA, Adi SS, Bortolossi JC, da Silva AC, da Silva AM, de Moraes FE, de Oliveira JC, de Souza RF (2010). Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of //Xanthomonas fuscans// subsp//aurantifolii//BMC Genomics 11238. DOI: [[https://doi.org/10.1186/1471-2164-11-238|10.1186/1471-2164-11-238]]
  
-Moreira LMAlmeida NFPotnis N, Digiampietri LA, Adi SS, Bortolossi JCda Silva ACda Silva AM, de Moraes FE, de Oliveira JC, de Souza RF (2010). Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subspaurantifoliiBMC Genomics 11238. DOI: [[https://doi.org/10.1186/1471-2164-11-238|10.1186/1471-2164-11-238]].+Nimchuk ZLFisher EJDesvaux DChang JHDangl JL (2007). The HopX (AvrPphE) family of //Pseudomonas syringae// type III effectors require a catalytic triad and a novel N-terminal domain forfunction. MolPlant Microbe Interact20346-357. DOI: [[https://doi.org/10.1094/MPMI-20-4-0346|10.1094/MPMI-20-4-0346]]
  
-Nimchuk ZLFisher EJDesvaux DChang JH, Dangl JL (2007). The HopX (AvrPphE) family of //Pseudomonas syringae// type III effectors require a catalytic triad and a novel N-terminal domain forfunctionMolPlant Microbe Interact20346-357. DOI: [[https://doi.org/10.1094/MPMI-20-4-0346|10.1094/MPMI-20-4-0346]].+Oh HSKvitko BHMorello JECollmer A (2007). //Pseudomonas syringae// lytic transglycosylases coregulated with the type III secretion system contribute to the translocation of effector proteins into plant cellsJBacteriol1898277-8289. DOI: [[https://doi.org/10.1128/JB.00998-07|10.1128/JB.00998-07]]
  
bacteria/t3e/xope3.1593762694.txt.gz · Last modified: 2020/07/03 09:51 by rkoebnik