User Tools

Site Tools


bacteria:t3e:xopf

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
bacteria:t3e:xopf [2020/07/03 15:08]
rkoebnik [Biological function]
bacteria:t3e:xopf [2020/09/10 18:29]
rkoebnik [Conservation]
Line 3: Line 3:
 Author: [[https://www.researchgate.net/profile/Leonor_Martins|Leonor Martins]]\\ Author: [[https://www.researchgate.net/profile/Leonor_Martins|Leonor Martins]]\\
 Internal reviewer: [[https://www.researchgate.net/profile/Jaime_Cubero|Jaime Cubero]]\\ Internal reviewer: [[https://www.researchgate.net/profile/Jaime_Cubero|Jaime Cubero]]\\
-Expert reviewer: FIXME+Expert reviewer: [[https://www.researchgate.net/profile/Kalyan_Mondal|Kalyan K Mondal]]
  
 Class: XopF\\ Class: XopF\\
 Family: XopF1, XopF2, XopF3\\ Family: XopF1, XopF2, XopF3\\
-Prototype: XopF (//Xanthomonas euvesicatoria// aka //Xanthomonas campestris pv. vesicatoria//; strain 85-10)\\ +Prototype: XopF (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris //pv. //vesicatoria//; strain 85-10)\\ 
-RefSeq ID: XopF1 [[https://www.ncbi.nlm.nih.gov/protein/WP_011346095.1|WP_011346095.1]] (670 aa), XopF2 [[https://www.ncbi.nlm.nih.gov/protein/56121735|AAV74205.1]] (667 aa)\\+RefSeq ID: XopF1_Xe [[https://www.ncbi.nlm.nih.gov/protein/WP_011346095.1|WP_011346095.1]] (670 aa), XopF1_Xoo [[https://www.ncbi.nlm.nih.gov/protein/589298639|WP_AHK80891]] (661 aa), XopF2 [[https://www.ncbi.nlm.nih.gov/protein/56121735|AAV74205.1]] (667 aa)\\ 
 +Synonym: Hpa4\\
 3D structure: Unknown 3D structure: Unknown
  
Line 15: Line 16:
 === How discovered? === === How discovered? ===
  
-XopF1 and XopF2 were identified by a genetic screen using AvrBs2 as reporter protein (Roden //et al//., 2004).+XopF1 and XopF2 were identified in a genetic screenusing a Tn//5//-based transposon construct harboring the coding sequence for the HR-inducing domain of AvrBs2, but devoid of the effectors' T3SS signal, that was randomly inserted into the genome of //X. campestris// pv. //vesicatoria// (//Xcv//)strain 85-10. The XopF1::AvrBs2 and XopF2::AvrBs2 fusion proteins triggered //Bs2//-dependent hypersensitive response (HR) in pepper leaves (Roden //et al//., 2004).
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-//Xcv// XopF1::AvrBs2 proteins triggered avrBs2-dependent hypersensitive response (HRduring infection in Bs2-resistant pepper leaves. Fragments of the //xopF1// gene are located within the //hrp// cluster of many //Xanthomonas// spp., although a complete ORF is present only in the //Xcv// and //Xanthomonas oryzae// pv. //oryzae// (//Xoo//) //hrp// clusters (Roden //et al//., 2004). XopF1 belongs to the class A effectors (Büttner //et al//., 2006). XopF2 is 59% identical and 68% similar to XopF1 when analysed with the pairwise BLAST algorithm. //xopF2// appears to be co-transcribed with ORF1. ORF1 analysis revealed characteristics shared by type III chaperones, and is suggested to encode an Xcv chaperone (Roden //et al//., 2004).+Type III-dependent secretion of XopF1 and XopF2 was confirmed using a calmodulin-dependent adenylate cyclase reporter assay, with a Δ//hrpF// mutant strain serving as negative control (Roden //et al.//, 2004, Mondal et al, 2016). 
 + 
 +Fragments of the //xopF1// gene are located within the //hrp// cluster of many //Xanthomonas// spp., although a complete ORF is present only in the //Xcv// and //Xanthomonas oryzae// pv. //oryzae// (//Xoo//) //hrp// clusters (Roden //et al//., 2004). 
 + 
 +XopF1 belongs to the class A effectors (Büttner //et al//., 2006). XopF2 is 59% identical and 68% similar to XopF1 when analysed with the pairwise BLAST algorithm. //xopF2// appears to be co-transcribed with ORF1. ORF1 analysis revealed characteristics shared by type III chaperones, and is suggested to encode an Xcv chaperone (Roden //et al//., 2004).
 === Regulation === === Regulation ===
  
Line 29: Line 34:
   * To study the possible virulence function of the putative //xopF1//  operon encoding HpaD, HpaI, and XopF1 these three genes were deleted from the genome of //X. campestris//  pv. //vesicatoria//  85-10. The resultant mutant strain 85-10Δ//EF//  displayed a wild-type phenotype when infiltrated into susceptible and resistant plants. To investigate a possible functional redundancy due to homologous genes, //xopF2//  and the flanking ORF //XCV2943//  were also deleted in strain 85-10Δ//EF//. Since the resulting multiple mutant strain 85-10Δ//EF//Δ//xopF2//  also behaved like the wild type in infection tests//, xopF1//  and //xopF2//  regions did not seem to play an obvious role in the bacterial interaction with the host plant. (Büttner //et al//., 2007).   * To study the possible virulence function of the putative //xopF1//  operon encoding HpaD, HpaI, and XopF1 these three genes were deleted from the genome of //X. campestris//  pv. //vesicatoria//  85-10. The resultant mutant strain 85-10Δ//EF//  displayed a wild-type phenotype when infiltrated into susceptible and resistant plants. To investigate a possible functional redundancy due to homologous genes, //xopF2//  and the flanking ORF //XCV2943//  were also deleted in strain 85-10Δ//EF//. Since the resulting multiple mutant strain 85-10Δ//EF//Δ//xopF2//  also behaved like the wild type in infection tests//, xopF1//  and //xopF2//  regions did not seem to play an obvious role in the bacterial interaction with the host plant. (Büttner //et al//., 2007).
   * Later, //Xoo//  XopF1 was proven to contribute to virulence in rice, as infection with //xopF1//  mutant has shown a reduced lesion size comparing to wild type (Mondal //et al//., 2016).   * Later, //Xoo//  XopF1 was proven to contribute to virulence in rice, as infection with //xopF1//  mutant has shown a reduced lesion size comparing to wild type (Mondal //et al//., 2016).
-  * Additionally, XopF1 and XopF2 of //X. euvesicatoria//  and //Xoo//  seem to have a role in PTI suppression //in planta//  namely by inhibiting callose deposition and by suppressing the induction of PTI marker genes, overall contributing to development of symptoms (Mondal //et al//., 2016; Popov //et al//., 2016).+  * Additionally, XopF1 and XopF2 of //X. euvesicatoria//  and //Xoo//  seem to have a role in PTI suppression //in planta//namely by inhibiting callose deposition and by suppressing the induction of PTI marker genes, overall contributing to development of symptoms (Mondal //et al//., 2016; Popov //et al//., 2016).
   * //Xoo//  XopF1 triggered an HR in non-host plants (Li //et al//., 2016).   * //Xoo//  XopF1 triggered an HR in non-host plants (Li //et al//., 2016).
 === Localization === === Localization ===
Line 47: Line 52:
 === In xanthomonads === === In xanthomonads ===
  
-Yes (//e.g.//, //X. arboricola, X. bromi//, //X. citri, X. oryzae//, //X. euvesicatoria//, //X. translucens//, //X. vasicola//). Since the G+C content of the //xopF1// gene is similar to that of the //Xcv// //hrp// gene cluster, it may be a member of a “core” group of //Xanthomonas// spp. effectors (Roden et al., 2004).+Yes (//e.g.//, //X. arboricola, X. bromi//, //X. citri, X. oryzae// pv.// oryzae//, //X. euvesicatoria//, //X. translucens//, //X. vasicola//). Since the G+C content of the //xopF1// gene is similar to that of the //Xcv// //hrp// gene cluster, it may be a member of a “core” group of //Xanthomonas// spp. effectors (Roden //et al.//, 2004).
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
Line 54: Line 59:
 ===== References ===== ===== References =====
  
-Büttner D, Lorenz C, Weber E, Bonas U (2006). Targeting of two effector protein classes to the type III secretion system by a HpaC- and HpaB-dependent protein complex from //Xanthomonas campestris// pv. //vesicatoria//. Mol. Microbiol. 59: 513-527. DOI: [[https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2958.2005.04924.x|10.1111/j.1365-2958.2005.04924.x]]+Büttner D, Lorenz C, Weber E, Bonas U (2006). Targeting of two effector protein classes to the type III secretion system by a HpaC- and HpaB-dependent protein complex from //Xanthomonas campestris//  pv. //vesicatoria//. Mol. Microbiol. 59: 513-527. DOI: [[https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2958.2005.04924.x|10.1111/j.1365-2958.2005.04924.x]] 
 + 
 +Büttner D, Noël L, Stuttmann J, Bonas U (2007). Characterization of the nonconserved //hpaB//-//hrpF//  region in the //hrp//  pathogenicity island from //Xanthomonas campestris//  pv. //vesicatoria.//  Mol. Plant Microbe Interact. 20: 1063-1074. DOI: [[https://apsjournals.apsnet.org/doi/10.1094/MPMI-20-9-1063|10.1094/MPMI-20-9-1063]] 
 + 
 +Li S, Wang Y, Wang S, Fang A, Wang J, Liu L, Zhang K, Mao Y, Sun W (2015). The type III effector AvrBs2 in //Xanthomonas oryzae//  pv. //oryzicola//  suppresses rice immunity and promotes disease development. Mol. Plant Microbe Interact. 28: 869-880. DOI: [[https://apsjournals.apsnet.org/doi/10.1094/MPMI-10-14-0314-R|10.1094/MPMI-10-14-0314-R]]
  
-Büttner DNoël L, Stuttmann J, Bonas U (2007). Characterization of the nonconserved //hpaB//-//hrpF// region in the //hrp// pathogenicity island from //Xanthomonas campestris// pv. //vesicatoria.// MolPlant Microbe Interact201063-1074. DOI: [[https://apsjournals.apsnet.org/doi/10.1094/MPMI-20-9-1063|10.1094/MPMI-20-9-1063]]+Liu YLong J, Shen D, Song C (2016). //Xanthomonas oryzae//  pv. //oryzae//  requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS MicrobiolLett363fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]]
  
-Li SWang YWang SFang A, Wang J, Liu L, Zhang K, Mao Y, Sun W (2015). The type III effector AvrBs2 in //Xanthomonas oryzae// pv. //oryzicola// suppresses rice immunity and promotes disease developmentMol. Plant Microbe Interact28869-880. DOI: [[https://apsjournals.apsnet.org/doi/10.1094/MPMI-10-14-0314-R|10.1094/MPMI-10-14-0314-R]]+Mondal K KVerma GManjuJunaid A, Mani C (2016). Rice pathogen //Xanthomonas oryzae//  pv. //oryzae//  employs inducible hrp-dependent XopF type III effector protein for its growth, pathogenicity and for suppression of PTI response to induce blight disease. Eur. J. Plant Pathol144311-323. DOI: [[https://link.springer.com/article/10.1007/s10658-015-0768-7|10.1007/s10658-015-0768-7]]
  
-Liu YLong JShen DSong C (2016). //Xanthomonas oryzae// pv. //oryzae// requires H-NS-family protein XrvC to regulate virulence during rice infectionFEMS MicrobiolLett363fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]]+Popov GFraiture MBrunner FSessa G (2016). Multiple //Xanthomonas euvesicatoria//  type III effectors inhibit flg22-triggered immunityMolPlant Microbe Interact29651-660. DOI: [[https://apsjournals.apsnet.org/doi/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]
  
-Mondal K KVerma GManjuJunaid AMani C (2016). Rice pathogen //Xanthomonas oryzae// pv//oryzae// employs inducible hrp-dependent XopF type III effector protein for its growth, pathogenicity and for suppression of PTI response to induce blight diseaseEurJPlant Pathol144311-323. DOI: [[https://link.springer.com/article/10.1007/s10658-015-0768-7|10.1007/s10658-015-0768-7]]+Roden JBelt BRoss JTachibana TVargas J, Mudgett M (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas//  infectionProcNatlAcadSciUSA 10116624-16629. DOI: [[https://www.pnas.org/content/101/47/16624|10.1073/pnas.0407383101]]
  
-Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://apsjournals.apsnet.org/doi/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]+===== Further reading =====
  
-Roden JBelt BRoss JTachibana T, Vargas J, Mudgett M (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas// infectionProcNatlAcad. Sci. USA 10116624-16629. DOI: [[https://www.pnas.org/content/101/47/16624|10.1073/pnas.0407383101]]+Salomon DDar DSreeramulu SSessa G (2011). Expression of Xanthomonas campestris pv. //vesicatoria//  type III effectors in yeast affects cell growth and viabilityMolPlant Microbe Interact24305-314. DOI: [[https://doi.org/10.1094/MPMI-09-10-0196|10.1094/MPMI-09-10-0196]]
  
bacteria/t3e/xopf.txt · Last modified: 2020/09/10 18:31 by rkoebnik