User Tools

Site Tools


bacteria:t3e:xopf

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopf [2020/07/03 15:09]
rkoebnik [XopF]
bacteria:t3e:xopf [2020/09/10 18:31] (current)
rkoebnik
Line 3: Line 3:
 Author: [[https://www.researchgate.net/profile/Leonor_Martins|Leonor Martins]]\\ Author: [[https://www.researchgate.net/profile/Leonor_Martins|Leonor Martins]]\\
 Internal reviewer: [[https://www.researchgate.net/profile/Jaime_Cubero|Jaime Cubero]]\\ Internal reviewer: [[https://www.researchgate.net/profile/Jaime_Cubero|Jaime Cubero]]\\
-Expert reviewer: FIXME+Expert reviewer: [[https://www.researchgate.net/profile/Kalyan_Mondal|Kalyan K Mondal]]
  
 Class: XopF\\ Class: XopF\\
 Family: XopF1, XopF2, XopF3\\ Family: XopF1, XopF2, XopF3\\
-Prototype: XopF (//Xanthomonas euvesicatoria// aka //Xanthomonas campestris pv. vesicatoria//; strain 85-10 [//Xcv//])\\ +Prototype: XopF (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris //pv. //vesicatoria//; strain 85-10)\\ 
-RefSeq ID: XopF1 [[https://www.ncbi.nlm.nih.gov/protein/WP_011346095.1|WP_011346095.1]] (670 aa), XopF2 [[https://www.ncbi.nlm.nih.gov/protein/56121735|AAV74205.1]] (667 aa)\\+RefSeq ID: XopF1_Xe [[https://www.ncbi.nlm.nih.gov/protein/WP_011346095.1|WP_011346095.1]] (670 aa), XopF1_Xoo [[https://www.ncbi.nlm.nih.gov/protein/589298639|WP_AHK80891]] (661 aa), XopF2 [[https://www.ncbi.nlm.nih.gov/protein/56121735|AAV74205.1]] (667 aa)\\ 
 +Synonym: Hpa4\\
 3D structure: Unknown 3D structure: Unknown
  
Line 15: Line 16:
 === How discovered? === === How discovered? ===
  
-XopF1 and XopF2 were identified by a genetic screen using AvrBs2 as reporter protein (Roden //et al//., 2004).+XopF1 and XopF2 were identified in a genetic screenusing a Tn//5//-based transposon construct harboring the coding sequence for the HR-inducing domain of AvrBs2, but devoid of the effectors' T3SS signal, that was randomly inserted into the genome of //X. campestris// pv. //vesicatoria// (//Xcv//) strain 85-10. The XopF1::AvrBs2 and XopF2::AvrBs2 fusion proteins triggered //Bs2//-dependent hypersensitive response (HR) in pepper leaves (Roden //et al//., 2004).
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-//Xcv// XopF1::AvrBs2 proteins triggered avrBs2-dependent hypersensitive response (HRduring infection in Bs2-resistant pepper leaves. Fragments of the //xopF1// gene are located within the //hrp// cluster of many //Xanthomonas// spp., although a complete ORF is present only in the //Xcv// and //Xanthomonas oryzae// pv. //oryzae// (//Xoo//) //hrp// clusters (Roden //et al//., 2004). XopF1 belongs to the class A effectors (Büttner //et al//., 2006). XopF2 is 59% identical and 68% similar to XopF1 when analysed with the pairwise BLAST algorithm. //xopF2// appears to be co-transcribed with ORF1. ORF1 analysis revealed characteristics shared by type III chaperones, and is suggested to encode an Xcv chaperone (Roden //et al//., 2004).+Type III-dependent secretion of XopF1 and XopF2 was confirmed using a calmodulin-dependent adenylate cyclase reporter assay, with a Δ//hrpF// mutant strain serving as negative control (Roden //et al.//, 2004, Mondal //et al.//, 2016). 
 + 
 +Fragments of the //xopF1// gene are located within the //hrp// cluster of many //Xanthomonas// spp., although a complete ORF is present only in the //Xcv// and //Xanthomonas oryzae// pv. //oryzae// (//Xoo//) //hrp// clusters (Roden //et al//., 2004). 
 + 
 +XopF1 belongs to the class A effectors (Büttner //et al//., 2006). XopF2 is 59% identical and 68% similar to XopF1 when analysed with the pairwise BLAST algorithm. //xopF2// appears to be co-transcribed with ORF1. ORF1 analysis revealed characteristics shared by type III chaperones, and is suggested to encode an //Xcv// chaperone (Roden //et al//., 2004).
 === Regulation === === Regulation ===
  
Line 26: Line 31:
 === Phenotypes === === Phenotypes ===
  
-  * Roden et al. did not find significant growth defects of a //Xcv//  Δ//xopF1//  or Δ//xopF2//  mutant in susceptible pepper and tomato leaves (Roden et al., 2004) +  * Roden et al. did not find significant growth defects of a //Xcv//  Δ//xopF1//  or Δ//xopF2//  mutant in susceptible pepper and tomato leaves (Roden //et al.//, 2004) 
-  * To study the possible virulence function of the putative //xopF1//  operon encoding HpaD, HpaI, and XopF1 these three genes were deleted from the genome of //X. campestris//  pv. //vesicatoria//  85-10. The resultant mutant strain 85-10Δ//EF//  displayed a wild-type phenotype when infiltrated into susceptible and resistant plants. To investigate a possible functional redundancy due to homologous genes, //xopF2//  and the flanking ORF //XCV2943//  were also deleted in strain 85-10Δ//EF//. Since the resulting multiple mutant strain 85-10Δ//EF//Δ//xopF2//  also behaved like the wild type in infection tests//, xopF1//  and //xopF2//  regions did not seem to play an obvious role in the bacterial interaction with the host plant(Büttner //et al//., 2007).+  * To study the possible virulence function of the putative //xopF1//  operon encoding HpaD, HpaI, and XopF1 these three genes were deleted from the genome of //Xcv //85-10. The resultant mutant strain 85-10Δ//EF//  displayed a wild-type phenotype when infiltrated into susceptible and resistant plants. To investigate a possible functional redundancy due to homologous genes, //xopF2//  and the flanking ORF //XCV2943//  were also deleted in strain 85-10Δ//EF//. Since the resulting multiple mutant strain 85-10Δ//EF//Δ//xopF2//  also behaved like the wild type in infection tests//, xopF1//  and //xopF2//  regions did not seem to play an obvious role in the bacterial interaction with the host plant (Büttner //et al//., 2007).
   * Later, //Xoo//  XopF1 was proven to contribute to virulence in rice, as infection with //xopF1//  mutant has shown a reduced lesion size comparing to wild type (Mondal //et al//., 2016).   * Later, //Xoo//  XopF1 was proven to contribute to virulence in rice, as infection with //xopF1//  mutant has shown a reduced lesion size comparing to wild type (Mondal //et al//., 2016).
-  * Additionally, XopF1 and XopF2 of //X. euvesicatoria//  and //Xoo//  seem to have a role in PTI suppression //in planta//  namely by inhibiting callose deposition and by suppressing the induction of PTI marker genes, overall contributing to development of symptoms (Mondal //et al//., 2016; Popov //et al//., 2016).+  * Additionally, XopF1 and XopF2 of //X. euvesicatoria//  and //Xoo//  seem to have a role in PTI suppression //in planta//namely by inhibiting callose deposition and by suppressing the induction of PTI marker genes, overall contributing to development of symptoms (Mondal //et al//., 2016; Popov //et al//., 2016).
   * //Xoo//  XopF1 triggered an HR in non-host plants (Li //et al//., 2016).   * //Xoo//  XopF1 triggered an HR in non-host plants (Li //et al//., 2016).
 === Localization === === Localization ===
Line 47: Line 52:
 === In xanthomonads === === In xanthomonads ===
  
-Yes (//e.g.//, //X. arboricola, X. bromi//, //X. citri, X. oryzae//, //X. euvesicatoria//, //X. translucens//, //X. vasicola//). Since the G+C content of the //xopF1// gene is similar to that of the //Xcv// //hrp// gene cluster, it may be a member of a “core” group of //Xanthomonas// spp. effectors (Roden et al., 2004).+Yes (//e.g.//, //X. arboricola, X. bromi//, //X. citri, X. oryzae//  pv.// oryzae//, //X. euvesicatoria//, //X. translucens//, //X. vasicola//). Since the G+C content of the //xopF1//  gene is similar to that of the //Xcv//  //hrp//  gene cluster, it may be a member of a “core” group of //Xanthomonas//  spp. effectors (Roden //et al.//, 2004). 
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
Line 54: Line 60:
 ===== References ===== ===== References =====
  
-Büttner D, Lorenz C, Weber E, Bonas U (2006). Targeting of two effector protein classes to the type III secretion system by a HpaC- and HpaB-dependent protein complex from //Xanthomonas campestris// pv. //vesicatoria//. Mol. Microbiol. 59: 513-527. DOI: [[https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2958.2005.04924.x|10.1111/j.1365-2958.2005.04924.x]]+Büttner D, Lorenz C, Weber E, Bonas U (2006). Targeting of two effector protein classes to the type III secretion system by a HpaC- and HpaB-dependent protein complex from //Xanthomonas campestris//  pv. //vesicatoria//. Mol. Microbiol. 59: 513-527. DOI: [[https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2958.2005.04924.x|10.1111/j.1365-2958.2005.04924.x]] 
 + 
 +Büttner D, Noël L, Stuttmann J, Bonas U (2007). Characterization of the nonconserved //hpaB//-//hrpF//  region in the //hrp//  pathogenicity island from //Xanthomonas campestris//  pv. //vesicatoria.//  Mol. Plant Microbe Interact. 20: 1063-1074. DOI: [[https://apsjournals.apsnet.org/doi/10.1094/MPMI-20-9-1063|10.1094/MPMI-20-9-1063]] 
 + 
 +Li S, Wang Y, Wang S, Fang A, Wang J, Liu L, Zhang K, Mao Y, Sun W (2015). The type III effector AvrBs2 in //Xanthomonas oryzae//  pv. //oryzicola//  suppresses rice immunity and promotes disease development. Mol. Plant Microbe Interact. 28: 869-880. DOI: [[https://apsjournals.apsnet.org/doi/10.1094/MPMI-10-14-0314-R|10.1094/MPMI-10-14-0314-R]]
  
-Büttner DNoël L, Stuttmann J, Bonas U (2007). Characterization of the nonconserved //hpaB//-//hrpF// region in the //hrp// pathogenicity island from //Xanthomonas campestris// pv. //vesicatoria.// MolPlant Microbe Interact201063-1074. DOI: [[https://apsjournals.apsnet.org/doi/10.1094/MPMI-20-9-1063|10.1094/MPMI-20-9-1063]]+Liu YLong J, Shen D, Song C (2016). //Xanthomonas oryzae//  pv. //oryzae//  requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS MicrobiolLett363fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]]
  
-Li SWang YWang SFang A, Wang J, Liu L, Zhang K, Mao Y, Sun W (2015). The type III effector AvrBs2 in //Xanthomonas oryzae// pv. //oryzicola// suppresses rice immunity and promotes disease developmentMol. Plant Microbe Interact28869-880. DOI: [[https://apsjournals.apsnet.org/doi/10.1094/MPMI-10-14-0314-R|10.1094/MPMI-10-14-0314-R]]+Mondal K KVerma GManjuJunaid A, Mani C (2016). Rice pathogen //Xanthomonas oryzae//  pv. //oryzae//  employs inducible hrp-dependent XopF type III effector protein for its growth, pathogenicity and for suppression of PTI response to induce blight disease. Eur. J. Plant Pathol144311-323. DOI: [[https://link.springer.com/article/10.1007/s10658-015-0768-7|10.1007/s10658-015-0768-7]]
  
-Liu YLong JShen DSong C (2016). //Xanthomonas oryzae// pv. //oryzae// requires H-NS-family protein XrvC to regulate virulence during rice infectionFEMS MicrobiolLett363fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]]+Popov GFraiture MBrunner FSessa G (2016). Multiple //Xanthomonas euvesicatoria//  type III effectors inhibit flg22-triggered immunityMolPlant Microbe Interact29651-660. DOI: [[https://apsjournals.apsnet.org/doi/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]
  
-Mondal K KVerma GManjuJunaid AMani C (2016). Rice pathogen //Xanthomonas oryzae// pv//oryzae// employs inducible hrp-dependent XopF type III effector protein for its growth, pathogenicity and for suppression of PTI response to induce blight diseaseEurJPlant Pathol144311-323. DOI: [[https://link.springer.com/article/10.1007/s10658-015-0768-7|10.1007/s10658-015-0768-7]]+Roden JBelt BRoss JTachibana TVargas J, Mudgett M (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas//  infectionProcNatlAcadSciUSA 10116624-16629. DOI: [[https://www.pnas.org/content/101/47/16624|10.1073/pnas.0407383101]]
  
-Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://apsjournals.apsnet.org/doi/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]+===== Further reading =====
  
-Roden JBelt BRoss JTachibana T, Vargas J, Mudgett M (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas// infectionProcNatlAcad. Sci. USA 10116624-16629. DOI: [[https://www.pnas.org/content/101/47/16624|10.1073/pnas.0407383101]]+Salomon DDar DSreeramulu SSessa G (2011). Expression of Xanthomonas campestris pv. //vesicatoria//  type III effectors in yeast affects cell growth and viabilityMolPlant Microbe Interact24305-314. DOI: [[https://doi.org/10.1094/MPMI-09-10-0196|10.1094/MPMI-09-10-0196]]
  
bacteria/t3e/xopf.1593781752.txt.gz · Last modified: 2020/07/03 15:09 by rkoebnik