User Tools

Site Tools


bacteria:t3e:xopn

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopn [2020/08/09 20:14]
jvicente
bacteria:t3e:xopn [2020/08/09 20:32] (current)
jvicente
Line 20: Line 20:
 === Regulation === === Regulation ===
  
-Start codon of //xopN// was found downstream of a conserved cis-regulatory element, the plant-inducible promoter (PIP) box (TTCGG-N15-TTCTG). //xopN// is regulated by //hrpX// and //hrpG// genes (Cheong //et al//., 2013Jiang //et al//., 2008).+Start codon of //xopN// was found downstream of a conserved cis-regulatory element, the plant-inducible promoter (PIP) box (TTCGG-N15-TTCTG). //xopN// is regulated by //hrpX// and //hrpG// genes (Jiang //et al//., 2008Cheong //et al//., 2013).
  
 qRT-PCR revealed that transcript levels of 15 out of 18 tested non-TAL effector genes (as well as the regulatory genes //hrpG// and //hrpX//) were significantly reduced in the //Xanthomonas oryzae// pv. //oryzae// Δ//xrvC// mutant compared with those in the wild-type strain PXO99<sup>A</sup>  , but this did not apply to //xopN// (Liu //et al.//, 2016). qRT-PCR revealed that transcript levels of 15 out of 18 tested non-TAL effector genes (as well as the regulatory genes //hrpG// and //hrpX//) were significantly reduced in the //Xanthomonas oryzae// pv. //oryzae// Δ//xrvC// mutant compared with those in the wild-type strain PXO99<sup>A</sup>  , but this did not apply to //xopN// (Liu //et al.//, 2016).
Line 29: Line 29:
   * XopN has been shown to play a role in host defence systems causing the reduction of PAMP-triggered immune responses and reduce the callose deposition in the host tissue. Moreover the deletion of //xopN//  open reading frame (ORF) reduced the //Xcv//  strain virulence exhibited by lower bacterial spot symptoms occurrence (Kim //et al//., 2009).   * XopN has been shown to play a role in host defence systems causing the reduction of PAMP-triggered immune responses and reduce the callose deposition in the host tissue. Moreover the deletion of //xopN//  open reading frame (ORF) reduced the //Xcv//  strain virulence exhibited by lower bacterial spot symptoms occurrence (Kim //et al//., 2009).
   * The role of XopN in X. oryzae pv. oryzae is dependent on leaf stage (Cheong et al., 2013).   * The role of XopN in X. oryzae pv. oryzae is dependent on leaf stage (Cheong et al., 2013).
-  * XopN has been shown to be required for maximal pathogenicity of //X. axonopodis//  pv. //punicae//  (//Xap//) in pomegranate (Kumar and Mondal, 2013). The deletion of XopN from Xap caused higher accumulation of reactive oxygen species showing that XopN suppresses ROS-mdeiated defense responses during blight pathogenesis in pomegranate (Kumar //et al.//, 2016).+  * XopN has been shown to be required for maximal pathogenicity of //X. axonopodis//  pv. //punicae//  (//Xap//) in pomegranate (Kumar and Mondal, 2013). The deletion of XopN from Xap caused higher accumulation of reactive oxygen species showing that XopN suppresses ROS-mediated defense responses during blight pathogenesis in pomegranate (Kumar //et al.//, 2016).
   * A Δ//xopN//–Δ//xopQ //double knock-out mutant in //X. phaseoli//  pv. //manihotis//  (//Xpm//) was less aggressive in the cassava host plant than its single mutation counterparts. In addition, //in planta //  bacterial growth was reduced at 5 dpi in the double mutant with respect to the wild-type strain CIO151 and individual knock-out strains. The phenotype of the double mutant could be complemented when transforming a plasmid containing //xopQ//. These results confirmed that //xopN //and// xopQ //are functionally redundant in //Xpm//  (Medina //et al.//, 2017).   * A Δ//xopN//–Δ//xopQ //double knock-out mutant in //X. phaseoli//  pv. //manihotis//  (//Xpm//) was less aggressive in the cassava host plant than its single mutation counterparts. In addition, //in planta //  bacterial growth was reduced at 5 dpi in the double mutant with respect to the wild-type strain CIO151 and individual knock-out strains. The phenotype of the double mutant could be complemented when transforming a plasmid containing //xopQ//. These results confirmed that //xopN //and// xopQ //are functionally redundant in //Xpm//  (Medina //et al.//, 2017).
-  * XopN was shown to contribute significantly to //X. oryzae//  pv. //oryzae//  (Xoo) virulence on a susceptible rice variety Nipponbare. XopN was shown to be highly translocated to suppress rice defense responses (Mo //et al.//, 2020). +  * //Agrobacterium//  mediated transient transfer of the gene for XopN resulted in suppression of rice innate immune responses induced by LipA, a hydrolitic enzyme secreted by //X. oryzae//  pv. //oryzae//  (Xoo), but a //xopN// <sup>//-// </sup>   mutant of //Xoo//  retains the ability to suppress these innate immune responses indicating other functionally redundant proteins; XopQ, XopX and XopZ were shown to be suppressors of LipA induced innate immune responses; mutation in any one of the //xopN, xopQ, xopX or xopZ//  genes causes partial virulence deficiency (Sinha et al., 2013). XopN was shown to contribute significantly to //X. oryzae//  pv. //oryzae//  (Xoo) virulence on a susceptible rice variety Nipponbare. XopN was shown to be highly translocated to suppress rice defense responses (Mo //et al.//, 2020). 
-  * XopN and AvrBS2 were shown to significantly contribute to virulence of //X. oryzae//  pv. //oryzicola// (Xoc GX01) (Liao //et al.//, 2020).+  * XopN and AvrBS2 were shown to significantly contribute to virulence of //X. oryzae//  pv. //oryzicola//  (Xoc GX01) (Liao //et al.//, 2020).
  
 === Localization === === Localization ===
Line 41: Line 41:
  
 XopN binds TARK1, a tomato atypical receptor kinase required for PTI. Taylor //et al.//  (2012) showed that XopN promotes TARK1/TFT1 complex formation //in vitro//  and //in planta//  by functioning as a molecular scaffold.TFT proteins are involved in immune signaling during //X. euvesicatoria//  infection and can interact with multiple effectors including XopN (Dubrow //et al.//, 2018). TARK1 was shown to interact with proteins predicted to be associated with stomatal closure (Guzman et al., 2020). XopN binds TARK1, a tomato atypical receptor kinase required for PTI. Taylor //et al.//  (2012) showed that XopN promotes TARK1/TFT1 complex formation //in vitro//  and //in planta//  by functioning as a molecular scaffold.TFT proteins are involved in immune signaling during //X. euvesicatoria//  infection and can interact with multiple effectors including XopN (Dubrow //et al.//, 2018). TARK1 was shown to interact with proteins predicted to be associated with stomatal closure (Guzman et al., 2020).
 +
 +Three effectors (XopZ, XopN and XopV) were shown to be able to supress the peptidoglycan-triggered MAPK activation and a triple mutant of Xoo lacking these genes showed additively reduced virulence (Long et al., 2018).
  
 === Interaction partners === === Interaction partners ===
Line 78: Line 80:
 Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae//  pv. //oryzae//  requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS Microbiol. Lett. 363: fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]] Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae//  pv. //oryzae//  requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS Microbiol. Lett. 363: fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]]
  
-Long J, Song C, Yan F, Zhou J, Zhou H, Yang B (2018). Non-TAL effectors from //Xanthomonas oryzae//  pv. //oryzae//  suppress peptidoglycan-triggered MAPK activation in rice. Front. Plant Sci. 9: 1857. doi: [[https://doi.org/10.3389/fpls.2018.01857|10.3389/fpls.2018.01857]]FIXME  Information needs to be added to the profile.+Long J, Song C, Yan F, Zhou J, Zhou H, Yang B (2018). Non-TAL effectors from //Xanthomonas oryzae//  pv. //oryzae//  suppress peptidoglycan-triggered MAPK activation in rice. Front. Plant Sci. 9: 1857. doi: [[https://doi.org/10.3389/fpls.2018.01857|10.3389/fpls.2018.01857]]
  
 Medina CA, Reyes PA, Trujillo CA, Gonzalez JL, Bejarano DA, Montenegro NA, Jacobs JM, Joe A, Restrepo S, Alfano JR, Bernal A (2018). The role of type III effectors from //Xanthomonas axonopodis//  pv. //manihotis//  in virulence and suppression of plant immunity. Mol. Plant Pathol. 19: 593-606. DOI:[[https://doi.org/10.1111/mpp.12545|10.1111/mpp.12545]] Medina CA, Reyes PA, Trujillo CA, Gonzalez JL, Bejarano DA, Montenegro NA, Jacobs JM, Joe A, Restrepo S, Alfano JR, Bernal A (2018). The role of type III effectors from //Xanthomonas axonopodis//  pv. //manihotis//  in virulence and suppression of plant immunity. Mol. Plant Pathol. 19: 593-606. DOI:[[https://doi.org/10.1111/mpp.12545|10.1111/mpp.12545]]
Line 86: Line 88:
 Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas//  infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]] Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas//  infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]]
  
-Sinha D, Gupta MK, Patel HK, Ranjan A, Sonti RV (2013). Cell wall degrading enzyme induced rice innate immune responses are suppressed by the type 3 secretion system effectors XopN, XopQ, XopX and XopZ of //Xanthomonas oryzae//  pv. //oryzae//. PLoS One 8: e75867. DOI: [[https://doi.org/10.1371/journal.pone.0075867|10.1371/journal.pone.0075867]]FIXME  Information needs to be added to the profile.+Sinha D, Gupta MK, Patel HK, Ranjan A, Sonti RV (2013). Cell wall degrading enzyme induced rice innate immune responses are suppressed by the type 3 secretion system effectors XopN, XopQ, XopX and XopZ of //Xanthomonas oryzae//  pv. //oryzae//. PLoS One 8: e75867. DOI: [[https://doi.org/10.1371/journal.pone.0075867|10.1371/journal.pone.007586]]7
  
 Taylor KW, Kim JG, Su XB, Aakre CD, Roden JA, Adams CM, Mudgett MB (2012). Tomato TFT1 is required for PAMP-triggered immunity and mutations that prevent T3S effector XopN from binding to TFT1 attenuate //Xanthomonas//  virulence. PLoS Pathog. 8: e1002768. DOI: [[https://doi.org/10.1371/journal.ppat.1002768|10.1371/journal.ppat.1002768]] Taylor KW, Kim JG, Su XB, Aakre CD, Roden JA, Adams CM, Mudgett MB (2012). Tomato TFT1 is required for PAMP-triggered immunity and mutations that prevent T3S effector XopN from binding to TFT1 attenuate //Xanthomonas//  virulence. PLoS Pathog. 8: e1002768. DOI: [[https://doi.org/10.1371/journal.ppat.1002768|10.1371/journal.ppat.1002768]]
  
bacteria/t3e/xopn.1596996840.txt.gz · Last modified: 2020/08/09 20:14 by jvicente