User Tools

Site Tools


bacteria:t3e:avrbs3

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
bacteria:t3e:avrbs3 [2020/08/07 15:06]
jensboch
bacteria:t3e:avrbs3 [2020/08/07 17:56]
rkoebnik [Biological function]
Line 2: Line 2:
  
 Author: [[https://www.researchgate.net/profile/Nay_Dia2|Nay C. Dia]]\\ Author: [[https://www.researchgate.net/profile/Nay_Dia2|Nay C. Dia]]\\
-Internal reviewer: Jens Boch\\+Internal reviewer: [[https://www.genetik.uni-hannover.de/boch.html|Jens Boch]]\\
 Expert reviewer: FIXME Expert reviewer: FIXME
  
Line 18: Line 18:
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-AvrBs3 is secreted and translocated into the plant via the Hrp type III secretion system (Bonas //et al//., 1991; Van den Ackerveken //et al//., 1996; Bonas //et al//., 1999). In contrast to wild-type bacteria, an //Xcv// mutant carrying a deletion in the conserved //hrp// gene //hrcV// did not secrete AvrBs3 indicating that AvrBs3 is transported by the Hrp system (Rossier //et al//., 1999). In its C-terminal domain, AvrBs3 carries an acidic activation domain which is functional in plant cells (Van den Ackerveken //et al//., 1996). Two nuclear localization signals in the C-terminal domain of AvrBs3 facilitate transport into the plant cell nucleus (Van den Ackerveken //et al//., 1996; Szurek //et al//., 2002). These eukaryotic features support the role of AvrBs3 and members of the TALE family within the eukaryotic host cell.+AvrBs3 is secreted and translocated into the plant via the Hrp type III secretion system (Bonas //et al//., 1991; Van den Ackerveken //et al//., 1996; Bonas //et al//., 1999). In contrast to wild-type bacteria, an //Xcv// mutant carrying a deletion in the conserved //hrp// gene //hrcV// did not secrete AvrBs3 indicating that AvrBs3 is transported by the Hrp system (Rossier //et al//., 1999). The first 10 and 50 amino acids of AvrBs3 are required for secretion and translocation, respectively (Scheibner //et al//., 2017). In its C-terminal domain, AvrBs3 carries an acidic activation domain which is functional in plant cells (Van den Ackerveken //et al//., 1996). Two nuclear localization signals in the C-terminal domain of AvrBs3 facilitate transport into the plant cell nucleus (Van den Ackerveken //et al//., 1996; Szurek //et al//., 2002). These eukaryotic features support the role of AvrBs3 and members of the TALE family within the eukaryotic host cell.
 === Regulation === === Regulation ===
  
Line 30: Line 30:
 In resistant pepper plants, the promoter of //Bs3// contains a //UPA// box that is bound by AvrBs3 resulting in the transcription of the gene //Bs3//. //Bs3// encodes a protein that is homologous to flavine-dependent mono-oxygenases (Römer //et al//., 2007) and its expression causes rapid cell death thus preventing the spread of the pathogen (Bonas //et al//., 1989; Bonas //et al//., 1991). In resistant pepper plants, the promoter of //Bs3// contains a //UPA// box that is bound by AvrBs3 resulting in the transcription of the gene //Bs3//. //Bs3// encodes a protein that is homologous to flavine-dependent mono-oxygenases (Römer //et al//., 2007) and its expression causes rapid cell death thus preventing the spread of the pathogen (Bonas //et al//., 1989; Bonas //et al//., 1991).
  
-The central region of the //avrBs3// gene consists of 17.5 nearly identical 102 bp repeats. Each repeat encodes 34 amino acids (Bonas //et al//., 1989). Repeat variable di-residues (RVDs) at positions 12 and 13 determine the specificity of each repeat (Boch //et al//., 2009; Moscou & Bogdanove, 2009). Rearranging individual TALE repeats allows the generation of+The central region of the //avrBs3// gene consists of 17.5 nearly identical 102 bp repeats. Each repeat encodes 34 amino acids (Bonas //et al//., 1989). Repeat variable di-residues (RVDs) at positions 12 and 13 determine the specificity of each repeat (Boch //et al//., 2009; Moscou & Bogdanove, 2009). Rearranging individual repeats enables construction of any desired DNA-binding specificity (Boch //et al.//, 2009).
 === Localization === === Localization ===
  
Line 40: Line 40:
 === Interaction partners === === Interaction partners ===
  
-Importin alpha (Szurek //et al.//, 2001) interacts with the nuclear localization sequences of AvrBs3. The basal transcription factor IIA, gamma subunit from rice interacts with a region in the C-terminal domain of TALEs (Yuan //et al//., 2016) and similar interactions might be possible for AvrBs3, too. AvrBs3 and the TALE-family of effectors bind to DNA (Kay //et al//., 2007; Römer //et al//., 2007) with their N-terminal domain exhibiting general DNA-binding properties (Gao //et al.//, 2012) and the repeat region facilitating specific interaction to DNA bases (Boch //et al//., 2009; Moscou and Bogdanove, 2009).+Importin alpha (Szurek //et al.//, 2001) interacts with the nuclear localization sequences of AvrBs3. The basal transcription factor IIA, gamma subunit from rice interacts with a region in the C-terminal domain of TALEs (Yuan //et al//., 2016) and similar interactions might be possible for AvrBs3, too. AvrBs3 and the TALE-family of effectors bind to DNA (Kay //et al//., 2007; Römer //et al//., 2007) with their N-terminal domain exhibiting general DNA-binding properties (Gao //et al.//, 2012) and the repeat region facilitating specific interaction to DNA bases (Boch //et al//., 2009; Moscou Bogdanove, 2009). 
 ===== Conservation ===== ===== Conservation =====
  
Line 79: Line 80:
  
 Hopkins CM, White FF, Choi SH, Guo A, Leach JE (1992). Identification of a family of avirulence genes from //Xanthomonas// //oryzae// pv. //oryzae//. Mol. Plant Microbe Interact. 5: 451-459. DOI: [[https://doi.org/10.1094/mpmi-5-451|10.1094/mpmi-5-451]] Hopkins CM, White FF, Choi SH, Guo A, Leach JE (1992). Identification of a family of avirulence genes from //Xanthomonas// //oryzae// pv. //oryzae//. Mol. Plant Microbe Interact. 5: 451-459. DOI: [[https://doi.org/10.1094/mpmi-5-451|10.1094/mpmi-5-451]]
- 
-Ji ZY, Xiong L, Zou LF, Li YR, Ma WX, Liu L, Zakria M, Ji GH, Chen GY (2014). AvrXa7-Xa7 mediated defense in rice can be suppressed by transcriptional activator-like effectors TAL6 and TAL11a from //Xanthomonas oryzae// pv. //oryzicola//. Mol. Plant Microbe Interact. 27: 983-995. DOI: [[https://doi.org/10.1094/MPMI-09-13-0279-R|10.1094/MPMI-09-13-0279-R]]. **Retraction in: Mol. Plant Microbe Interact. (2014) 27: 1413.** FIXME 
  
 Kay S, Hahn S, Marois E, Hause G, Bonas U (2007). A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318: 648-651. DOI: [[http://dx.doi.org/10.1126/science.1144956|10.1126/science.1144956]] Kay S, Hahn S, Marois E, Hause G, Bonas U (2007). A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318: 648-651. DOI: [[http://dx.doi.org/10.1126/science.1144956|10.1126/science.1144956]]
Line 102: Line 101:
 Rossier O, Wengelnik K, Hahn K, Bonas U (1999). The //Xanthomonas// Hrp type III system secretes proteins from plant and mammalian bacterial pathogens. Proc. Natl. Acad. Sci. USA 96: 9368-9373. DOI: [[https://doi.org/10.1073/pnas.96.16.9368|10.1073/pnas.96.16.9368]] Rossier O, Wengelnik K, Hahn K, Bonas U (1999). The //Xanthomonas// Hrp type III system secretes proteins from plant and mammalian bacterial pathogens. Proc. Natl. Acad. Sci. USA 96: 9368-9373. DOI: [[https://doi.org/10.1073/pnas.96.16.9368|10.1073/pnas.96.16.9368]]
  
-Scheibner F, Marillonnet S, Büttner D (2017). The TAL effector AvrBs3 from //Xanthomonas campestris// pv. //vesicatoria// contains multiple export signals and can enter plant cells in the absence of the type III secretion translocon. Front Microbiol. 8: 2180. DOI: [[https://doi.org/10.3389/fmicb.2017.02180|10.3389/fmicb.2017.02180]] FIXME  Information needs to be added to the profil!+Scheibner F, Marillonnet S, Büttner D (2017). The TAL effector AvrBs3 from //Xanthomonas campestris// pv. //vesicatoria// contains multiple export signals and can enter plant cells in the absence of the type III secretion translocon. Front Microbiol. 8: 2180. DOI: [[https://doi.org/10.3389/fmicb.2017.02180|10.3389/fmicb.2017.02180]]
  
 Stella S, Molina R, Yefimenko I, Prieto J, Silva G, Bertonati C, Juillerat A, Duchateau P, Montoya G (2013). Structure of the AvrBs3–DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Cryst. 69: 1707-1716. DOI: [[http://dx.doi.org/10.1107/S0907444913016429|10.1107/S0907444913016429]] Stella S, Molina R, Yefimenko I, Prieto J, Silva G, Bertonati C, Juillerat A, Duchateau P, Montoya G (2013). Structure of the AvrBs3–DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Cryst. 69: 1707-1716. DOI: [[http://dx.doi.org/10.1107/S0907444913016429|10.1107/S0907444913016429]]
Line 126: Line 125:
 Hutin M, Pérez-Quintero AL, Lopez C, Szurek B (2015). MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility. Front. Plant Sci. 6: 535. DOI: [[https://doi.org/10.3389/fpls.2015.00535|10.3389/fpls.2015.00535]]. Erratum in: Front Plant Sci. (2015) 6: 647. Hutin M, Pérez-Quintero AL, Lopez C, Szurek B (2015). MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility. Front. Plant Sci. 6: 535. DOI: [[https://doi.org/10.3389/fpls.2015.00535|10.3389/fpls.2015.00535]]. Erratum in: Front Plant Sci. (2015) 6: 647.
  
-Scholze HBoch J (2010). TAL effector-DNA specificity. Virulence 1: 428-432. DOI: [[https://doi.org/10.4161/viru.1.5.12863|10.4161/viru.1.5.12863]] +Xue JLu Z, Liu W, Wang S, Lu D, Wang X, He X (2020). The genetic arms race between plant and //Xanthomonas//: lessons learned from TALE biologySciChina Life Sci63. DOI: [[https://doi.org/10.1007/s11427-020-1699-4|10.1007/s11427-020-1699-4]]
- +
-Scholze H, Boch J (2011). TAL effectors are remote controls for gene activation. Curr. Opin. Microbiol. 14: 47-53. DOI: [[https://doi.org/10.1016/j.mib.2010.12.001|10.1016/j.mib.2010.12.001]] +
- +
-Yuan M, Ke Y, Huang R, Ma L, Yang Z, Chu Z, Xiao J, Li X, Wang S (2016). A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. Elife 5: DOI: [[https://doi.org/10.7554/eLife.19605|10.7554/eLife.19605]]+
  
 Zhang J, Yin Z, White F (2015). TAL effectors and the executor //R// genes. Front. Plant Sci. 6: 641. DOI: [[https://doi.org/10.3389/fpls.2015.00641|10.3389/fpls.2015.00641]] Zhang J, Yin Z, White F (2015). TAL effectors and the executor //R// genes. Front. Plant Sci. 6: 641. DOI: [[https://doi.org/10.3389/fpls.2015.00641|10.3389/fpls.2015.00641]]