User Tools

Site Tools


bacteria:t3e:xopaj

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
bacteria:t3e:xopaj [2020/08/14 00:18]
jfpothier
bacteria:t3e:xopaj [2020/08/14 00:52]
jfpothier [Conservation]
Line 21: Line 21:
 === Regulation === === Regulation ===
  
- No data available? :FIXME:+No data available.
  
 === Phenotypes === === Phenotypes ===
Line 44: Line 44:
 === Enzymatic function === === Enzymatic function ===
  
-AvrRxo1 has a T4 polynucleotide kinase domain (Han //et al.//, 2015).+AvrRxo1 has a T4 polynucleotide kinase domain (Han //et al.//, 2015; Wu //et al//., 2015).
  
 AvrRxo1 is an authentic phosphotransferase that produces two novel metabolites by phosphorylating nicotinamide/nicotinic acid adenine dinucleotide at the adenosine 3'-hydroxyl group. Both products of AvrRxo1, 3'-NADP and 3'-nicotinic acid adenine dinucleotide phosphate (3'-NAADP), had been used before as inhibitors or signaling molecules but were regarded as "artificial" compounds until then (Schuebel //et al.//, 2016). AvrRxo1 is an authentic phosphotransferase that produces two novel metabolites by phosphorylating nicotinamide/nicotinic acid adenine dinucleotide at the adenosine 3'-hydroxyl group. Both products of AvrRxo1, 3'-NADP and 3'-nicotinic acid adenine dinucleotide phosphate (3'-NAADP), had been used before as inhibitors or signaling molecules but were regarded as "artificial" compounds until then (Schuebel //et al.//, 2016).
Line 64: Line 64:
 Yes (e.g. //X. alfalfae//, //X. axonopodis//, //X. bromi//, //X. euvesicatoria//, //X. oryzae//, //X. translucens//). Yes (e.g. //X. alfalfae//, //X. axonopodis//, //X. bromi//, //X. euvesicatoria//, //X. oryzae//, //X. translucens//).
  
-AvrRxo1 appears to be widely conserved in Asian strains of //Xoc//  but much less present in African strains, which implies that deployment of //Rxo1//-containing varieties may not be an appropriate breeding strategy for controlling bacterial leaf streak disease in Africa (Wonni //et al.//, 2014). +AvrRxo1 appears to be widely conserved in Asian strains of //Xoc// but much less present in African strains, which implies that deployment of //Rxo1//-containing varieties may not be an appropriate breeding strategy for controlling bacterial leaf streak disease in Africa (Wonni //et al.//, 2014).
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
-Yes (//Acidovorax//  spp., //Burkholderia andropogonis//) (Triplett //et al.//, 2016)+Yes (//Acidovorax// spp., //Burkholderia andropogonis//) (Triplett //et al.//, 2016).
  
 ===== References ===== ===== References =====
Line 74: Line 73:
 Bahadur RP, Basak J (2014). Molecular modeling of protein-protein interaction to decipher the structural mechanism of nonhost resistance in rice. J. Biomol. Struct. Dyn. 32: 669-681. DOI: [[https://doi.org/10.1080/07391102.2013.787370|10.1080/07391102.2013.787370]] Bahadur RP, Basak J (2014). Molecular modeling of protein-protein interaction to decipher the structural mechanism of nonhost resistance in rice. J. Biomol. Struct. Dyn. 32: 669-681. DOI: [[https://doi.org/10.1080/07391102.2013.787370|10.1080/07391102.2013.787370]]
  
-Han Q, Zhou C, Wu S, Liu Y, Triplett L, Miao J, Tokuhisa J, Deblais L, Robinson H, Leach JE, Li J, Zhao B (2015). Crystal structure of //Xanthomonas//  AvrRxo1-ORF1, a type III effector with a polynucleotide kinase domain, and its interactor AvrRxo1-ORF2. Structure 23: 1900-1909. DOI: [[https://doi.org/10.1016/j.str.2015.06.030|10.1016/j.str.2015.06.030]]+Han Q, Zhou C, Wu S, Liu Y, Triplett L, Miao J, Tokuhisa J, Deblais L, Robinson H, Leach JE, Li J, Zhao B (2015). Crystal structure of //Xanthomonas// AvrRxo1-ORF1, a type III effector with a polynucleotide kinase domain, and its interactor AvrRxo1-ORF2. Structure 23: 1900-1909. DOI: [[https://doi.org/10.1016/j.str.2015.06.030|10.1016/j.str.2015.06.030]]
  
 Liu H, Chang Q, Feng W, Zhang B, Wu T, Li N, Yao F, Ding X, Chu Z (2014). Domain dissection of AvrRxo1 for suppressor, avirulence and cytotoxicity functions. PLoS One 9: e113875. DOI: [[https://doi.org/10.1371/journal.pone.0113875|10.1371/journal.pone.0113875]] Liu H, Chang Q, Feng W, Zhang B, Wu T, Li N, Yao F, Ding X, Chu Z (2014). Domain dissection of AvrRxo1 for suppressor, avirulence and cytotoxicity functions. PLoS One 9: e113875. DOI: [[https://doi.org/10.1371/journal.pone.0113875|10.1371/journal.pone.0113875]]
  
-Liu Y, Wang K, Cheng Q, Kong D, Zhang X, Wang Z, Wang Q, Qi X, Yan J, Chu J, Ling H, Li Q, Miao J, Zhao B (2020). Cysteine protease RD21A regulated by E3 ligase SINAT4 is required for drought-induced resistance to //Pseudomonas syringae//  in Arabidopsis. J. Exp. Bot., eraa255 (in press). DOI: [[https://doi.org/10.1093/jxb/eraa255|10.1093/jxb/eraa255]]+Liu Y, Wang K, Cheng Q, Kong D, Zhang X, Wang Z, Wang Q, Qi X, Yan J, Chu J, Ling H, Li Q, Miao J, Zhao B (2020). Cysteine protease RD21A regulated by E3 ligase SINAT4 is required for drought-induced resistance to //Pseudomonas syringae// in Arabidopsis. J. Exp. Bot., eraa255 (in press). DOI: [[https://doi.org/10.1093/jxb/eraa255|10.1093/jxb/eraa255]]
  
-Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria//  type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]+Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]
  
-Salomon D, Dar D, Sreeramulu S, Sessa G (2011). Expression of //Xanthomonas////campestris//  pv. //vesicatoria//  type III effectors in yeast affects cell growth and viability. Mol. Plant Microbe Interact. 24: 305-314. DOI: [[https://doi.org/10.1094/MPMI-09-10-0196|10.1094/MPMI-09-10-0196]]+Salomon D, Dar D, Sreeramulu S, Sessa G (2011). Expression of //Xanthomonas////campestris// pv. //vesicatoria// type III effectors in yeast affects cell growth and viability. Mol. Plant Microbe Interact. 24: 305-314. DOI: [[https://doi.org/10.1094/MPMI-09-10-0196|10.1094/MPMI-09-10-0196]]
  
 Schuebel F, Rocker A, Edelmann D, Schessner J, Brieke C, Meinhart A (2016). 3'-NADP and 3'-NAADP, two metabolites formed by the bacterial type III effector AvrRxo1. J. Biol. Chem. 291: 22868-22880. DOI: [[https://doi.org/10.1074/jbc.M116.751297|10.1074/jbc.M116.751297]] Schuebel F, Rocker A, Edelmann D, Schessner J, Brieke C, Meinhart A (2016). 3'-NADP and 3'-NAADP, two metabolites formed by the bacterial type III effector AvrRxo1. J. Biol. Chem. 291: 22868-22880. DOI: [[https://doi.org/10.1074/jbc.M116.751297|10.1074/jbc.M116.751297]]
Line 90: Line 89:
 Triplett LR, Shidore T, Long J, Miao J, Wu S, Han Q, Zhou C, Ishihara H, Li J, Zhao B, Leach JE (2016). AvrRxo1 Is a bifunctional type III secreted effector and toxin-antitoxin system component with homologs in diverse environmental contexts. PLoS One 11: e0158856. DOI: [[https://doi.org/10.1371/journal.pone.0158856|10.1371/journal.pone.0158856]] Triplett LR, Shidore T, Long J, Miao J, Wu S, Han Q, Zhou C, Ishihara H, Li J, Zhao B, Leach JE (2016). AvrRxo1 Is a bifunctional type III secreted effector and toxin-antitoxin system component with homologs in diverse environmental contexts. PLoS One 11: e0158856. DOI: [[https://doi.org/10.1371/journal.pone.0158856|10.1371/journal.pone.0158856]]
  
-Wonni I, Cottyn B, Detemmerman L, Dao S, Ouedraogo L, Sarra S, Tekete C, Poussier S, Corral R, Triplett L, Koita O, Koebnik R, Leach J, Szurek B, Maes M, Verdier V (2014). Analysis of //Xanthomonas oryzae//  pv. //oryzicola//  population in Mali and Burkina Faso reveals a high level of genetic and pathogenic diversity. Phytopathology 104: 520-531. DOI: [[https://doi.org/10.1094/PHYTO-07-13-0213-R|10.1094/PHYTO-07-13-0213-R]]+Wonni I, Cottyn B, Detemmerman L, Dao S, Ouedraogo L, Sarra S, Tekete C, Poussier S, Corral R, Triplett L, Koita O, Koebnik R, Leach J, Szurek B, Maes M, Verdier V (2014). Analysis of //Xanthomonas oryzae// pv. //oryzicola// population in Mali and Burkina Faso reveals a high level of genetic and pathogenic diversity. Phytopathology 104: 520-531. DOI: [[https://doi.org/10.1094/PHYTO-07-13-0213-R|10.1094/PHYTO-07-13-0213-R]] 
 + 
 +Wu S (2015). Structural and functional characterization of a //Xanthomonas// type III effector. PhD dissertation. Link: [[https://vtechworks.lib.vt.edu/handle/10919/73219|https://vtechworks.lib.vt.edu/handle/10919/73219]]
  
-Xie XW, Yu J, Xu JL, Zhou YL, Li ZK (2007). Introduction of a non-host gene //Rxo1//  cloned from maize resistant to rice bacterial leaf streak into rice varieties. Sheng Wu Gong Cheng Xue Bao [Chinese J. Biotechnol.] 23: 607-611. DOI: [[https://doi.org/10.1016/S1872-2075(07)60039-9|10.1016/S1872-2075(07)60039-9]]+Xie XW, Yu J, Xu JL, Zhou YL, Li ZK (2007). Introduction of a non-host gene //Rxo1// cloned from maize resistant to rice bacterial leaf streak into rice varieties. Sheng Wu Gong Cheng Xue Bao [Chinese J. Biotechnol.] 23: 607-611. DOI: [[https://doi.org/10.1016/S1872-2075(07)60039-9|10.1016/S1872-2075(07)60039-9]]
  
-Zhao B, Ardales EY, Raymundo A, Bai J, Trick HN, Leach JE, Hulbert SH (2004). The //avrRxo1//  gene from the rice pathogen //Xanthomonas oryzae//  pv. //oryzicola//  confers a nonhost defense reaction on maize with resistance gene //Rxo1//. Mol. Plant Microbe Interact. 17: 771-779. DOI: [[https://doi.org/10.1094/MPMI.2004.17.7.771|10.1094/MPMI.2004.17.7.771]]+Zhao B, Ardales EY, Raymundo A, Bai J, Trick HN, Leach JE, Hulbert SH (2004). The //avrRxo1// gene from the rice pathogen //Xanthomonas oryzae// pv. //oryzicola// confers a nonhost defense reaction on maize with resistance gene //Rxo1//. Mol. Plant Microbe Interact. 17: 771-779. DOI: [[https://doi.org/10.1094/MPMI.2004.17.7.771|10.1094/MPMI.2004.17.7.771]]
  
 Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S (2005). A maize resistance gene functions against bacterial streak disease in rice. Proc. Natl. Acad. Sci. USA 102: 15383-15388. DOI: [[https://doi.org/10.1073/pnas.0503023102|10.1073/pnas.0503023102]] Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S (2005). A maize resistance gene functions against bacterial streak disease in rice. Proc. Natl. Acad. Sci. USA 102: 15383-15388. DOI: [[https://doi.org/10.1073/pnas.0503023102|10.1073/pnas.0503023102]]