User Tools

Site Tools


bacteria:t3e:xopi

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
bacteria:t3e:xopi [2020/06/30 23:18]
irodrigues
bacteria:t3e:xopi [2020/07/08 18:46]
rkoebnik [XopI]
Line 1: Line 1:
 ====== XopI ====== ====== XopI ======
  
-Author: Trainees from the EuroXanth 2<sup>nd</sup>  Training School\\+Author: [[https://www.researchgate.net/profile/Joana_Costa12|Joana Costa]] & Trainees from the 2<sup>nd</sup>  EuroXanth Training School (Maria Laura Destefanis, [[https://www.researchgate.net/profile/Katarina_Gasic|Katarina Gašić]], [[https://www.researchgate.net/profile/G_Licciardello|Grazia Licciardello]], Tamara Popović)\\
 Internal reviewer: Isabel Rodrigues\\ Internal reviewer: Isabel Rodrigues\\
 Expert reviewer: FIXME Expert reviewer: FIXME
  
 Class: XopI\\ Class: XopI\\
-Family: Xop\\ +Family: XopI\\ 
-Prototype: (//Xanthomonas euvesicatoria// pv. //euvesicatoria// aka //Xanthomonas campestris// pv. //vescicatoria//; strain 85-10)\\+Prototype: (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\
 RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011346406.1|https://www.ncbi.nlm.nih.gov/protein/WP_011346406.1]]\\ RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011346406.1|https://www.ncbi.nlm.nih.gov/protein/WP_011346406.1]]\\
 3D structure: Unknown 3D structure: Unknown
Line 33: Line 33:
 === Interaction partners === === Interaction partners ===
  
-XopR and XopS belong to //Xcv// translocation class A, comprising T3Es whose translocation into plant cells is completely dependent on HpaB, whereas XopB, XopG, **XopI**, XopK, XopM and XopV were assigned to class B, because they are still translocated in the absence of HpaB (Büttner //et al.//, 2006). Both new class A effectors lack homology to known proteins or motifs, so that their molecular function remains elusive. By contrast, the class B effectors comprise the putative enzyme XopG, a member of the HopH family  of putative zinc metalloproteases. Other effectors possess interesting features, for example XopI contains an F‐box motif typical for eukaryotic proteins playing a role in the ubiquitin‐26S proteasome system (UPS). The UPS controls protein stability in eukaryotes and appears to be a favorable target for many T3Es, for example members of the GALA family, which strongly contribute to the virulence of //R. solanacearum// and the E3 ubiquitin ligase AvrPtoB from //P. syringae.//+XopR and XopS belong to //Xcv// translocation class A, comprising T3Es whose translocation into plant cells is completely dependent on HpaB, whereas XopB, XopG, **XopI**, XopK, XopM and XopV were assigned to class B, because they are still translocated in the absence of HpaB (Büttner //et al.//, 2006). Both new class A effectors lack homology to known proteins or motifs, so that their molecular function remains elusive. By contrast, the class B effectors comprise the putative enzyme XopG, a member of the HopH family of putative zinc metalloproteases. Other effectors possess interesting features, for example XopI contains an F‐box motif typical for eukaryotic proteins playing a role in the ubiquitin‐26S proteasome system (UPS). The UPS controls protein stability in eukaryotes and appears to be a favorable target for many T3Es, for example members of the GALA family, which strongly contribute to the virulence of //R. solanacearum// and the E3 ubiquitin ligase AvrPtoB from //P. syringae.//
 ===== Conservation ===== ===== Conservation =====
  
Line 46: Line 46:
 ===== References ===== ===== References =====
  
-<font 10.5pt/inherit;;#333333;;inherit>Büttner D, Lorenz C, Weber E, Bonas U (2006).</font> <font 10.5pt/inherit;;#333333;;inherit>Targeting of two effectorprotein classes to the type III secretion system by a HpaC- andHpaB-dependent protein complex from Xanthomonas campestris pv. Vesicatoria. Mol Microbiol.59: 513–527.</font> DOI: [[https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2958.2005.04924.x|10.1111/j.13652958.2005.04924.x]]+<font 10.5pt/inherit;;#333333;;inherit>Büttner D, Lorenz C, Weber E, Bonas U (2006).</font> <font 10.5pt/inherit;;#333333;;inherit>Targeting of two effectorprotein classes to the type III secretion system by a HpaC- andHpaB-dependent protein complex from //Xanthomonas campestris pv. Vesicatoria//. Mol Microbiol.59: 513–527.</font> DOI: [[https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2958.2005.04924.x|10.1111/j.13652958.2005.04924.x]]
  
-Nagel O, Bonas U (2018). The //Xanthomonas// effector protein XopI suppresses the stomatal immunity of tomato. Poster. 6<sup>th</sup>  Xanthomonas Genomics Conference & 2<sup>nd</sup>  Annual EuroXanth Conference. [[https://euroxanth.eu/wp-content/uploads/2018/07/EuroXanth_Second-Annual-Conference-Abstract-Book.pdf|https://euroxanth.eu/wp-content/uploads/2018/07/EuroXanth_Second-Annual-Conference-Abstract-Book.pdf]]+Nagel O, Bonas U (2018). The //Xanthomonas// effector protein XopI suppresses the stomatal immunity of tomato. Poster. 6<sup>th</sup>  Xanthomonas Genomics Conference & 2<sup>nd</sup>  Annual EuroXanth Conference. PDF: [[https://euroxanth.eu/wp-content/uploads/2018/07/EuroXanth_Second-Annual-Conference-Abstract-Book.pdf|https://euroxanth.eu/wp-content/uploads/2018/07/EuroXanth_Second-Annual-Conference-Abstract-Book.pdf]]
  
 Salomon D, Dar D, Sreeramulu S, Sessa G (2011). Expression of //Xanthomonas campestris// pv. //vesicatoria// type III effectors in yeast affects cell growth and viability. Mol. Plant Microbe Interact. 24: 305-314. DOI: [[https://doi.org/10.1094/MPMI-09-10-0196|10.1094/MPMI-09-10-0196]] Salomon D, Dar D, Sreeramulu S, Sessa G (2011). Expression of //Xanthomonas campestris// pv. //vesicatoria// type III effectors in yeast affects cell growth and viability. Mol. Plant Microbe Interact. 24: 305-314. DOI: [[https://doi.org/10.1094/MPMI-09-10-0196|10.1094/MPMI-09-10-0196]]
Line 57: Line 57:
  
 Üstün S, Börnke F (2014). Interactions of //Xanthomonas// type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways Front. Plant Sci. 5: 736. DOI: [[https://doi.org/10.3389/fpls.2014.00736|10.3389/fpls.2014.00736]] Üstün S, Börnke F (2014). Interactions of //Xanthomonas// type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways Front. Plant Sci. 5: 736. DOI: [[https://doi.org/10.3389/fpls.2014.00736|10.3389/fpls.2014.00736]]
 +
 +===== Further reading =====
 +
 +Thieme F (2006). Genombasierte Identifizierung neuer potentieller Virulenzfaktoren von //Xanthomonas// //campestris// pv. //vesicatoria//. Doctoral Thesis, Martin-Luther-Universität Halle-Wittenberg, Germany. PDF: [[http://sundoc.bibliothek.uni-halle.de/diss-online/06/06H103/prom.pdf|http://sundoc.bibliothek.uni-halle.de/diss-online/06/06H103/prom.pdf]]