User Tools

Site Tools


bacteria:t3e:xopj2

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
bacteria:t3e:xopj2 [2020/07/08 17:50]
rkoebnik [XopJ2]
bacteria:t3e:xopj2 [2020/07/09 17:31]
rkoebnik [Further reading]
Line 6: Line 6:
  
 Class: XopJ\\ Class: XopJ\\
-Family: XopJ2 (AvrBsT)\\ +Family: XopJ2\\ 
-Prototype: AvrBsT (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria// [//Xcv//]; strain 75-3)\\+Prototype: AvrBsT (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 75-3)\\
 RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_074052319.1|WP_074052319.1]] (350 aa)\\ RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_074052319.1|WP_074052319.1]] (350 aa)\\
-3D structure: not available+Synonym: AvrBsT\\ 
 +3D structure: unknown
  
 ===== Biological function ===== ===== Biological function =====
Line 18: Line 19:
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-C-myc epitope-tagged AvrBsT protein was detected in culture supernatants of the //Xcv// strain 85* only in the presence of a functional type III apparatus and not in a //hrcV// mutant, showing that the protein is secreted in an hrp-dependent manner (Escolar //et al//., 2001). Transient expression of //avrBsT// in resistant host plants using //Agrobacterium tumefaciens//-mediated gene transfer resulted in the induction of a specific HR. This indicates that recognition occurs intracellularly, and suggested that during the Xcv infection, AvrBsT is translocated from //Xcv// into the plant cell (Escolar //et al//., 2001). Mutation studies of a putative translocation motif (TrM) showed that the proline/arginine-rich motif contributes to efficient type III-dependent secretion and translocation of AvrBsT and affects the dependence of AvrBsT transport on the general T3S chaperone HpaB (Prochaska //et al//., 2018).+C-myc epitope-tagged AvrBsT protein was detected in culture supernatants of the //X. campestris// pv. //vesicatoria// (//Xcv//strain 85* only in the presence of a functional type III apparatus and not in a //hrcV// mutant, showing that the protein is secreted in an hrp-dependent manner (Escolar //et al//., 2001). Transient expression of //avrBsT// in resistant host plants using //Agrobacterium tumefaciens//-mediated gene transfer resulted in the induction of a specific HR. This indicates that recognition occurs intracellularly, and suggested that during the Xcv infection, AvrBsT is translocated from //Xcv// into the plant cell (Escolar //et al//., 2001). Mutation studies of a putative translocation motif (TrM) showed that the proline/arginine-rich motif contributes to efficient type III-dependent secretion and translocation of AvrBsT and affects the dependence of AvrBsT transport on the general T3S chaperone HpaB (Prochaska //et al//., 2018).
 === Regulation === === Regulation ===
  
Line 65: Line 66:
  
 Yes (//X. euvesicatoria//, //X. arboricola//, //X. citri//, //X. phaseoli//, //X. vasicola//, //X. vesicatoria//). Yes (//X. euvesicatoria//, //X. arboricola//, //X. citri//, //X. phaseoli//, //X. vasicola//, //X. vesicatoria//).
 +
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
-Yes (//Acidovorax// spp., //Brenneria// spp., //Erwinia// spp., //Pseudomonas// spp., //Ralstonia// spp.).+Yes (//Acidovorax//  spp., //Brenneria//  spp., //Erwinia//  spp., //Pseudomonas//  spp., //Ralstonia//  spp.). 
 ===== References ===== ===== References =====
  
-Abrahamian P, Timilsina S, Minsavage GV, Kc S, Goss EM, Jones JB, Vallad GE (2018). The type III effector AvrBsT enhances //Xanthomonas perforans// fitness in field-grown tomato. Phytopathology 108: 1355-1362. DOI: [[https://doi.org/10.1094/PHYTO-02-18-0052-R|10.1094/PHYTO-02-18-0052-R]]+Abrahamian P, Timilsina S, Minsavage GV, Kc S, Goss EM, Jones JB, Vallad GE (2018). The type III effector AvrBsT enhances //Xanthomonas perforans//  fitness in field-grown tomato. Phytopathology 108: 1355-1362. DOI: [[https://doi.org/10.1094/PHYTO-02-18-0052-R|10.1094/PHYTO-02-18-0052-R]]
  
-Cheong MS, Kirik A, Kim JG, Frame K, Kirik V, Mudgett MB (2014). AvrBsT acetylates //Arabidopsis// ACIP1, a protein that associates with microtubules and is required for immunity. PLoS Pathog. 10: e1003952. DOI: [[https://doi.org/10.1371/journal.ppat.1003952|10.1371/journal.ppat.1003952]]+Cheong MS, Kirik A, Kim JG, Frame K, Kirik V, Mudgett MB (2014). AvrBsT acetylates //Arabidopsis//  ACIP1, a protein that associates with microtubules and is required for immunity. PLoS Pathog. 10: e1003952. DOI: [[https://doi.org/10.1371/journal.ppat.1003952|10.1371/journal.ppat.1003952]]
  
-Ciesiolka LD, Hwin T, Gearlds JD, Minsavage GV, Saenz R, Bravo M, Handley V, Conover SM, ZhangH, Caporgno J, Phengrasamy NB, Toms AO, Stall RE, Whalen MC (1999). Regulation of expression of avirulence gene //avrRxv// and identification of a family of host interaction factors by sequence analysis of //avrBsT//. Mol. Plant Microbe Interact. 12: 35-44. DOI: [[https://doi.org/10.1094/MPMI.1999.12.1.35|10.1094/MPMI.1999.12.1.35]]+Ciesiolka LD, Hwin T, Gearlds JD, Minsavage GV, Saenz R, Bravo M, Handley V, Conover SM, ZhangH, Caporgno J, Phengrasamy NB, Toms AO, Stall RE, Whalen MC (1999). Regulation of expression of avirulence gene //avrRxv//  and identification of a family of host interaction factors by sequence analysis of //avrBsT//. Mol. Plant Microbe Interact. 12: 35-44. DOI: [[https://doi.org/10.1094/MPMI.1999.12.1.35|10.1094/MPMI.1999.12.1.35]]
  
 Cunnac S, Wilson A, Nuwer J, Kirik A, Baranage G, Mudgett MB (2007). A conserved carboxylesterase is a suppressor of AvrBsT-elicited resistance in //Arabidopsis//. Plant Cell 19: 688-705. DOI: [[https://doi.org/10.1105/tpc.106.048710|10.1105/tpc.106.048710]] Cunnac S, Wilson A, Nuwer J, Kirik A, Baranage G, Mudgett MB (2007). A conserved carboxylesterase is a suppressor of AvrBsT-elicited resistance in //Arabidopsis//. Plant Cell 19: 688-705. DOI: [[https://doi.org/10.1105/tpc.106.048710|10.1105/tpc.106.048710]]
  
-Escolar L, Van Den Ackerveken G, Pieplow S, Rossier O, Bonas U (2001). Type III secretion and //in planta// recognition of the //Xanthomonas// avirulence proteins AvrBs1 and AvrBsT. Mol. Plant Pathol. 2: 287-296. DOI: [[https://doi.org/10.1046/j.1464-6722.2001.00077.x.|10.1046/j.1464-6722.2001.00077.x|10.1046/j.1464-6722.2001.00077.x]]+Escolar L, Van Den Ackerveken G, Pieplow S, Rossier O, Bonas U (2001). Type III secretion and //in planta//  recognition of the //Xanthomonas//  avirulence proteins AvrBs1 and AvrBsT. Mol. Plant Pathol. 2: 287-296. DOI: [[https://doi.org/10.1046/j.1464-6722.2001.00077.x.|10.1046/j.1464-6722.2001.00077.x|10.1046/j.1464-6722.2001.00077.x]]
  
-Hwang IS, Kim NH, Choi DS, Hwang BK (2012). Overexpression of //Xanthomonas campestris// pv. //vesicatoria// effector AvrBsTin //Arabidopsis// triggers plant cell death, disease and defense responses. Planta 236: 1191-1204. DOI: [[https://doi.org/10.1007/s00425-012-1672-4|10.1007/s00425-012-1672-4]]+Hwang IS, Kim NH, Choi DS, Hwang BK (2012). Overexpression of //Xanthomonas campestris//  pv. //vesicatoria//  effector AvrBsTin //Arabidopsis//  triggers plant cell death, disease and defense responses. Planta 236: 1191-1204. DOI: [[https://doi.org/10.1007/s00425-012-1672-4|10.1007/s00425-012-1672-4]]
  
-Kim NH, Choi HW, Hwang BK (2010). //Xanthomonas campestris// pv. //vesicatoria// effector AvrBsT induces cell death in pepper, but suppresses defense responses in tomato. Mol. Plant Microbe Interact. 23: 1069-1082. DOI: [[https://doi.org/10.1094/MPMI-23-8-1069|10.1094/MPMI-23-8-1069]]+Kim NH, Choi HW, Hwang BK (2010). //Xanthomonas campestris//  pv. //vesicatoria//  effector AvrBsT induces cell death in pepper, but suppresses defense responses in tomato. Mol. Plant Microbe Interact. 23: 1069-1082. DOI: [[https://doi.org/10.1094/MPMI-23-8-1069|10.1094/MPMI-23-8-1069]]
  
 Kim NH, Hwang BK (2015a). Pepper heat shock protein 70a interacts with the type III effector AvrBsT and triggers plant cell death and immunity. Plant Physiol. 167: 307-322. DOI: [[https://doi.org/10.1104/pp.114.253898|10.1104/pp.114.253898]] Kim NH, Hwang BK (2015a). Pepper heat shock protein 70a interacts with the type III effector AvrBsT and triggers plant cell death and immunity. Plant Physiol. 167: 307-322. DOI: [[https://doi.org/10.1104/pp.114.253898|10.1104/pp.114.253898]]
  
-Kim NH, Hwang BK (2015b). Pepper aldehyde dehydrogenase CaALDH1 interacts with //Xanthomonas// effector AvrBsT and promotes effector-triggered cell death and defence responses. J. Exp. Bot. 66: 3367-3380. DOI: [[https://doi.org/10.1093/jxb/erv147|10.1093/jxb/erv147]]+Kim NH, Hwang BK (2015b). Pepper aldehyde dehydrogenase CaALDH1 interacts with //Xanthomonas//  effector AvrBsT and promotes effector-triggered cell death and defence responses. J. Exp. Bot. 66: 3367-3380. DOI: [[https://doi.org/10.1093/jxb/erv147|10.1093/jxb/erv147]]
  
-Kim NH, Kim DS, Chung EH, Hwang BK (2014). Pepper suppressor of the G2 allele of //skp1// interacts with the receptor-like cytoplasmic kinase1 and type III effector AvrBsT and promotes the hypersensitive cell death response in a phosphorylation-dependent manner. Plant Physiol. 165: 76-91. DOI: [[https://doi.org/10.1104/pp.114.238840|10.1104/pp.114.238840]] FIXME  → Infromation not yet incorporated in the profile!+Kim NH, Kim DS, Chung EH, Hwang BK (2014). Pepper suppressor of the G2 allele of //skp1//  interacts with the receptor-like cytoplasmic kinase1 and type III effector AvrBsT and promotes the hypersensitive cell death response in a phosphorylation-dependent manner. Plant Physiol. 165: 76-91. DOI: [[https://doi.org/10.1104/pp.114.238840|10.1104/pp.114.238840]] FIXME  → Infromation not yet incorporated in the profile!
  
 Kim NH, Kim BS, Hwang BK (2013). Pepper arginine decarboxylase is required for polyamine and γ-aminobutyric acid signaling in cell death and defense response. Plant Physiol. 162: 2067-2083. DOI: [[https://10.1104/pp.113.217372|10.1104/pp.113.217372]] Kim NH, Kim BS, Hwang BK (2013). Pepper arginine decarboxylase is required for polyamine and γ-aminobutyric acid signaling in cell death and defense response. Plant Physiol. 162: 2067-2083. DOI: [[https://10.1104/pp.113.217372|10.1104/pp.113.217372]]
Line 94: Line 97:
 Kirik A, Mudgett MB (2009) SOBER1 phospholipase activity suppresses phosphatidic acid accumulation and plant immunity in response to bacterial effector AvrBsT. Proc. Natl. Acad. Sci. U.S.A. 106: 20532-20537. DOI: [[https://doi.org/10.1073/pnas.0903859106|10.1073/pnas.0903859106]] Kirik A, Mudgett MB (2009) SOBER1 phospholipase activity suppresses phosphatidic acid accumulation and plant immunity in response to bacterial effector AvrBsT. Proc. Natl. Acad. Sci. U.S.A. 106: 20532-20537. DOI: [[https://doi.org/10.1073/pnas.0903859106|10.1073/pnas.0903859106]]
  
-Minsavage GV, Dahlbeck D, Whalen MC, Kearny B, Bonas U, Staskawicz BJ, Stall RE (1990). Gene-for-gene relationships specifying disease resistance in //Xanthomonas campestris// pv. //vesicatoria//-pepper interactions. Mol. Plant Microbe Interact. 3: 41-47. DOI: [[https://doi.org/10.1094/MPMI-3-041|10.1094/MPMI-3-041]]+Minsavage GV, Dahlbeck D, Whalen MC, Kearny B, Bonas U, Staskawicz BJ, Stall RE (1990). Gene-for-gene relationships specifying disease resistance in //Xanthomonas campestris//  pv. //vesicatoria//-pepper interactions. Mol. Plant Microbe Interact. 3: 41-47. DOI: [[https://doi.org/10.1094/MPMI-3-041|10.1094/MPMI-3-041]]
  
-Orth K, Xu ZH, Mudgett MB, Bao ZQ, Palmer LE, Bliska JB, Mangel WF, Staskawicz B, Dixon JE (2000). Disruption of signaling by //Yersinia// effector YopJ, a ubiquitin-like protein protease. Science 290: 1594-1597. DOI: [[https://doi.org/10.1126/science.290.5496.1594|10.1126/science.290.5496.1594]]+Orth K, Xu ZH, Mudgett MB, Bao ZQ, Palmer LE, Bliska JB, Mangel WF, Staskawicz B, Dixon JE (2000). Disruption of signaling by //Yersinia//  effector YopJ, a ubiquitin-like protein protease. Science 290: 1594-1597. DOI: [[https://doi.org/10.1126/science.290.5496.1594|10.1126/science.290.5496.1594]]
  
 Prochaska H, Thieme S, Daum S, Grau J, Schmidtke C, Hallensleben M, John P, Bacia K, Bonas U (2018). A conserved motif promotes HpaB-regulated export of type III effectors from //Xanthomonas//. Mol. Plant Pathol. 19: 2473-2487. DOI: [[https://doi.org/10.1111/mpp.12725|10.1111/mpp.12725]] Prochaska H, Thieme S, Daum S, Grau J, Schmidtke C, Hallensleben M, John P, Bacia K, Bonas U (2018). A conserved motif promotes HpaB-regulated export of type III effectors from //Xanthomonas//. Mol. Plant Pathol. 19: 2473-2487. DOI: [[https://doi.org/10.1111/mpp.12725|10.1111/mpp.12725]]
  
-Schwartz AR, Potnis N, Timilsina S, Wilson M, Patané J, Martins J Jr, Minsavage GV, Dahlbeck D, Akhunova A, Almeida N, Vallad GE, Barak JD, White FF, Miller SA, Ritchie D, Goss E, Bart RS, Setubal JC, Jones JB, Staskawicz BJ (2015). Phylogenomics of //Xanthomonas// field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Front. Microbiol. 6: 535. DOI: [[https://doi.org/10.3389/fmicb.2015.00535|10.3389/fmicb.2015.00535]]+Schwartz AR, Potnis N, Timilsina S, Wilson M, Patané J, Martins J Jr, Minsavage GV, Dahlbeck D, Akhunova A, Almeida N, Vallad GE, Barak JD, White FF, Miller SA, Ritchie D, Goss E, Bart RS, Setubal JC, Jones JB, Staskawicz BJ (2015). Phylogenomics of //Xanthomonas//  field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Front. Microbiol. 6: 535. DOI: [[https://doi.org/10.3389/fmicb.2015.00535|10.3389/fmicb.2015.00535]]
  
-Szczesny R, Büttner D, Escolar L, Schulze S, Seiferth A, Bonas U (2010). Suppression of the AvrBs1-specific hypersensitive response by the YopJ effector homolog AvrBsT from //Xanthomonas// depends on a SNF1-related kinase. New Phytol. 187: 1058-1074. DOI: [[https://doi.org/10.1111/j.1469-8137.2010.03346.x|10.1111/j.1469-8137.2010.03346.x]]+Szczesny R, Büttner D, Escolar L, Schulze S, Seiferth A, Bonas U (2010). Suppression of the AvrBs1-specific hypersensitive response by the YopJ effector homolog AvrBsT from //Xanthomonas//  depends on a SNF1-related kinase. New Phytol. 187: 1058-1074. DOI: [[https://doi.org/10.1111/j.1469-8137.2010.03346.x|10.1111/j.1469-8137.2010.03346.x]]
  
 ===== Further reading ===== ===== Further reading =====
 +
 +Han SW, Hwang BK (2017). Molecular functions of //Xanthomonas// type III effector AvrBsT and its plant interactors in cell death and defense signaling. Planta 245: 237-253. DOI: [[https://doi.org/10.1007/s00425-016-2628-x|10.1007/s00425-016-2628-x]]
  
 Timilsina S, Abrahamian P, Potnis N, Minsavage GV, White FF, Staskawicz BJ, Jones JB, Vallad GE, Goss EM (2016). Analysis of sequenced genomes of Xanthomonas perforans identifies candidate targets for resistance breeding in tomato. Phytopathology 106: 1097-1104. DOI: [[https://doi.org/10.1094/PHYTO-03-16-0119-FI|10.1094/PHYTO-03-16-0119-FI]] Timilsina S, Abrahamian P, Potnis N, Minsavage GV, White FF, Staskawicz BJ, Jones JB, Vallad GE, Goss EM (2016). Analysis of sequenced genomes of Xanthomonas perforans identifies candidate targets for resistance breeding in tomato. Phytopathology 106: 1097-1104. DOI: [[https://doi.org/10.1094/PHYTO-03-16-0119-FI|10.1094/PHYTO-03-16-0119-FI]]