User Tools

Site Tools


bacteria:t3e:xopn

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopn [2020/08/09 16:31]
jvicente
— (current)
Line 1: Line 1:
-====== XopN ====== 
- 
-Author: [[https://www.researchgate.net/profile/Jakub_Pecenka|Jakub Pečenka]]\\ 
-Internal reviewer: [[https://www.researchgate.net/profile/Joana_Vicente2|Joana G. Vicente]]\\ 
-Expert reviewer: FIXME 
- 
-Class: XopN\\ 
-Family: XopN\\ 
-Prototype: XopN (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\ 
-RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/NP_643095|NP_643095]] (733 aa)\\ 
-3D structure: unknown - similar to phosphatase 2a (pr65/A) (Roden //et al//., 2004). 
-===== Biological function ===== 
- 
-=== How discovered? === 
- 
-XopN was identified in a genetic screen, using a Tn//5//-based transposon construct harboring the coding sequence for the HR-inducing domain of AvrBs2, but devoid of the effectors' T3SS signal, that was randomly inserted into the genome of //X. campestris// pv. //vesicatoria// (//Xcv//)strain 85-10. The XopN::AvrBs2 fusion protein triggered a //Bs2//-dependent hypersensitive response (HR) in pepper leaves (Roden //et al//., 2004). 
-=== (Experimental) evidence for being a T3E === 
- 
-Type III-dependent secretion was confirmed using a calmodulin-dependent adenylate cyclase reporter assay, with a Δ//hrpF// mutant strain serving as negative control (Roden //et al.//, 2004). 
-=== Regulation === 
- 
-Start codon of //xopN// was found downstream if a conserved cis-regulatory element, the plant-inducible promoter (PIP) box (TTCGG-N15-TTCTG). //xopN// is regulated by //hrpX// and //hrpG// genes (Cheong //et al//., 2013; Jiang //et al//., 2008). 
- 
-qRT-PCR revealed that transcript levels of 15 out of 18 tested non-TAL effector genes (as well as the regulatory genes //hrpG// and //hrpX//) were significantly reduced in the //Xanthomonas oryzae// pv. //oryzae// Δ//xrvC// mutant compared with those in the wild-type strain PXO99<sup>A</sup>  , but this did not apply to //xopN// (Liu //et al.//, 2016). 
-=== Phenotypes === 
- 
-  * XopN<sub>Xcv</sub>  is required for the pathogens' maximal growth in the leaf tissue of tomato and pepper plants (Roden //et al//., 2004). 
-  * Its homolog XopN <sub>Xcc</sub>  was found as well to be required for full virulence on Chinese radish (Jiang //et al//., 2008). 
-  * XopN has been shown to play a role in host defence systems causing the reduction of PAMP-triggered immune responses and reduce the callose deposition in the host tissue. Moreover the deletion of //xopN//  open reading frame (ORF) reduced the //Xcv//  strain virulence exhibited by lower bacterial spot symptoms occurrence (Kim //et al//., 2009). 
-  * XopN has been shown to be required for maximal pathogenicity of //X. axonopodis//  pv. //punicae//  (//Xap//) in pomegranate (Kumar and Mondal, 2013). The deletion of XopN from Xap caused higher accumulation of reactive oxygen species showing that XopN suppresses ROS-mdeiated defense responses during blight pathogenesis in pomegranate (Kumar //et al.//, 2016). 
-  * A Δ//xopN//–Δ//xopQ //double knock-out mutant in //X. phaseoli//  pv. //manihotis//  (//Xpm//) was less aggressive in the cassava host plant than its single mutation counterparts. In addition, //in planta //  bacterial growth was reduced at 5 dpi in the double mutant with respect to the wild-type strain CIO151 and individual knock-out strains. The phenotype of the double mutant could be complemented when transforming a plasmid containing //xopQ//. These results confirmed that //xopN //and// xopQ //are functionally redundant in //Xpm//  (Medina //et al.//, 2017). 
-  * XopN was shown to contribute significantly to //X. oryzae//  pv. //oryzae//  (Xoo) virulence on a susceptible rice variety Nipponbare. XopN was shown to be highly translocated to suppress rice defense responses (Mo //et al.//, 2020). 
- 
-=== Localization === 
- 
-XopN was localized by confocal microscopy using fluorescent tagged fusion (yellow fluorescent protein [YFP]-XopN). [YFP]-XopN was localized throughout the plant cytoplasm and also associated with the plant plasma membrane (PM) (Kim //et al//., 2009). Kumar et al. (2016) demonstrated that XopN is localized in the pasma membrane of //N. benthamiana//, pomegranate and onion cells. 
- 
-=== Enzymatic function === 
- 
-Unknown – Kim //et al//. (2009) did not confirm that XopN is an enzyme (Kim //et al//., 2009). 
- 
-=== Interaction partners === 
- 
-XopN interact with two types of proteins in tomato: Tomato Atypical Receptor-like Kinase1 (TARK1) and four Tomato Fourteen-Three-Three isoforms (TFT1, TFT3, TFT5, and TFT6) (Kim //et al//., 2009). 
- 
-===== Conservation ===== 
- 
-=== In xanthomonads === 
- 
-Yes (//e.g.//, //X. axonopodis//, //X//. //campestris//, //X//. //citri//,// X//. //oryzae//). Since the G+C content of the //xopN//  gene is similar to that of the //Xcv//  //hrp gene//  cluster, it may be a member of a “core” group of //Xanthomonas//  spp. effectors (Roden et al., 2004). 
- 
-=== In other plant pathogens/symbionts === 
- 
-Yes (//e.g.//, //Pseudomonas//  spp.) (Kim //et al//., 2009). 
- 
-===== References ===== 
- 
-Cheong H, Kim CY, Jeon JS, Lee BM, Sun Moon J, Hwang I (2013). //Xanthomonas oryzae//  pv. //oryzae//  type III effector XopN targets OsVOZ2 and a putative thiamine synthase as a virulence factor in rice. PloS ONE 8: e73346. DOI: [[https://doi.org/10.1371/journal.pone.0073346|10.1371/journal.pone.0073346]]. 
- 
-Jiang B, He Y, Cen W, Wei H, Jiang G, Jiang W, Hang X, Feng J, Lu G, Tang D, Tang J (2008). The type III secretion effector XopXccN of //Xanthomonas campestris//  pv. //campestris//  is required for full virulence. Res. Microbiol. 159: 216-220. DOI: [[https://doi.org/10.1016/j.resmic.2007.12.004|10.1016/j.resmic.2007.12.004]] 
- 
-Kim JG, Li X, Roden JA, Taylor KW, Aakre CD, Su B, Landone S, Kirik A, Chen Y, Baranage G, Martin BG, Mudgett BM, McLane H (2009). //Xanthomonas//  T3S effector XopN suppresses PAMP-triggered immunity and interacts with a tomato atypical receptor-like kinase and TFT1. Plant Cell 21: 1305-1323. DOI: [[https://doi.org/10.1105/tpc.108.063123|10.1105/tpc.108.063123]] 
- 
-Kumar R, Mondal KK (2013). XopN-T3SS effector modulates in planta growth of Xanthomonas axonopodis pv. punicae and cell-wall-associated immune response to induce bacterial blight in pomegranate. Physiological and Mol. Plant Pathol. 84: 36-43. DOI: 10.1016/j.pmpp.2013.06.002 
- 
-Kumar R, Soni M, Mondal KK (2016). XopN-T3SS effector of //Xanthomonas axonopodis//  pv. //punicae//  localizes to the plasma membrane and modulates ROS accumulation events during blight pathogenesis in pomegranate. Microbiol. Res. 193: 111-120. DOI: [[https://doi.org/10.1016/j.micres.2016.10.001|10.1016/j.micres.2016.10.001]] FIXME  Information needs to be added to the profile. 
- 
-Li S, Wang Y, Wang S, Fang A, Wang J, Liu L, Zhang K, Mao Y, Sun W (2015). The type III effector AvrBs2 in //Xanthomonas oryzae//  pv. //oryzicola//  suppresses rice immunity and promotes disease development. Mol. Plant Microbe Interact. 28: 869-880. DOI: [[https://doi.org/10.1094/MPMI-10-14-0314-R|10.1094/MPMI-10-14-0314-R]] FIXME  Information needs to be added to the profile. 
- 
-Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae//  pv. //oryzae//  requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS Microbiol. Lett. 363: fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]] 
- 
-Long J, Song C, Yan F, Zhou J, Zhou H, Yang B (2018). Non-TAL effectors from //Xanthomonas oryzae//  pv. //oryzae//  suppress peptidoglycan-triggered MAPK activation in rice. Front. Plant Sci. 9: 1857. doi: [[https://doi.org/10.3389/fpls.2018.01857|10.3389/fpls.2018.01857]] FIXME  Information needs to be added to the profile. 
- 
-Medina CA, Reyes PA, Trujillo CA, Gonzalez JL, Bejarano DA, Montenegro NA, Jacobs JM, Joe A, Restrepo S, Alfano JR, Bernal A (2018). The role of type III effectors from //Xanthomonas axonopodis//  pv. //manihotis//  in virulence and suppression of plant immunity. Mol. Plant Pathol. 19: 593-606. DOI:[[https://doi.org/10.1111/mpp.12545|10.1111/mpp.12545]] 
- 
-Mo X, Zhang L, Liu Y, Wang X, Bai J, Lu K, Zou S, Dong H, Chen L (2020). Three proteins (Hpa2, HrpF and XopN) are concomitant type III translocators in bacterial blight pathogen of rice. Frontiers in Microbiology 11: 1601. DOI=10.3389/fmicb.2020.01601 
- 
-Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas//  infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]] 
- 
-Sinha D, Gupta MK, Patel HK, Ranjan A, Sonti RV (2013). Cell wall degrading enzyme induced rice innate immune responses are suppressed by the type 3 secretion system effectors XopN, XopQ, XopX and XopZ of //Xanthomonas oryzae//  pv. //oryzae//. PLoS One 8: e75867. DOI: [[https://doi.org/10.1371/journal.pone.0075867|10.1371/journal.pone.0075867]] FIXME  Information needs to be added to the profile. 
- 
-Taylor KW, Kim JG, Su XB, Aakre CD, Roden JA, Adams CM, Mudgett MB (2012). Tomato TFT1 is required for PAMP-triggered immunity and mutations that prevent T3S effector XopN from binding to TFT1 attenuate //Xanthomonas//  virulence. PLoS Pathog. 8: e1002768. DOI: [[https://doi.org/10.1371/journal.ppat.1002768|10.1371/journal.ppat.1002768]] FIXME  Information needs to be added to the profile. 
  
bacteria/t3e/xopn.1596983486.txt.gz · Last modified: 2020/08/09 16:31 by jvicente