User Tools

Site Tools


bacteria:t3e:xopo

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
bacteria:t3e:xopo [2020/07/01 11:15]
jakubpecenka
bacteria:t3e:xopo [2020/07/09 11:05]
rkoebnik [XopO]
Line 2: Line 2:
  
 Author: Harrold van den Burg\\ Author: Harrold van den Burg\\
-Internal reviewer: Jakub Pecenka\\+Internal reviewer: [[https://www.researchgate.net/profile/Jakub_Pecenka|Jakub Pečenka]]\\
 Expert reviewer: FIXME Expert reviewer: FIXME
  
 Class: XopO\\ Class: XopO\\
 Family: XopO\\ Family: XopO\\
-Prototype: XopO (//Xanthomonas euvesicatoria// pv. //euvesicatoria// aka //Xanthomonas campestris// pv. //vescicatoria//; strain 85-10)\\+Prototype: XopO (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\
 RefSeq ID: [[https://www.ncbi.nlm.nih.gov/ipg/3884105|AAV74207.1]] (220 aa)\\ RefSeq ID: [[https://www.ncbi.nlm.nih.gov/ipg/3884105|AAV74207.1]] (220 aa)\\
 3D structure: Unknown 3D structure: Unknown
Line 15: Line 15:
 === How discovered? === === How discovered? ===
  
-XopO was discovered by random transponson insertion (Tn5) screen using a AvrBs2<sub>62-547</sub> reporter (readout: hypersensitive response), a construct that lacks the endogenous type-III secretion and translocation signal (Roden //et al//., 2004).+XopO was identified in genetic screenusing a Tn//5//-based transposon construct harboring the coding sequence for the HR-inducing domain of AvrBs2, but devoid of the effectors' T3SS signal, that was randomly inserted into the genome of //X. campestris// pv. //vesicatoria// (//Xcv//)// //// //strain 85-10. The XopO::AvrBs2 fusion protein triggered a //Bs2//-dependent hypersensitive response (HRin pepper leaves (Roden //et al//., 2004).
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-XopO fused to the Cya reporter was used to show that it is translocated into plant cells in a //hrpF//-dependent manner (Roden //et al//., 2004).+Type III-dependent secretion was confirmed using calmodulin-dependent adenylate cyclase reporter assay, with a Δ//hrpF// mutant strain serving as negative control (Roden //et al.//, 2004).
 === Regulation === === Regulation ===
  
Line 24: Line 24:
 === Phenotypes === === Phenotypes ===
  
-XopO from Xcv 85-10 inhibits cell death in //N. benthamiana// (Teper //et al//., 2015). XopO suppresses //X. euvesicatoria-//induced chlorosis in leaves of susceptible tomato (Teper //et al//., 2015). The //xopO// gene is a differential T3E gene between //Xoo// and //Xoc// (Hajri //et al//., 2012). XopO failed to inhibit expression of the reporter gene //FRK1// in response to application of a PAMP, i.e. flg22 peptide (Popov //et al//., 2016). Based on whole genome sequences of //X. euvesicatoria// strains, it was concluded that the //xopO// gene has suffered from mutational inactivation by at least four different events, suggesting that selection pressure favors loss of //xopO// function in this pathogen (Barak //et al//., 2016).+  * Roden et al. did not find significant growth defects of a //Xcv//  Δ//xopO//  mutant in susceptible pepper and tomato leaves (Roden et al., 2004). 
 +  * XopO from //Xcv//  85-10 inhibits cell death in //N. benthamiana//  (Teper //et al//., 2015). 
 +  * XopO suppresses //X. euvesicatoria-//induced chlorosis in leaves of susceptible tomato (Teper //et al//., 2015). 
 +  * XopO failed to inhibit expression of the reporter gene //FRK1//  in response to application of a PAMP, i.e. flg22 peptide (Popov //et al//., 2016). 
 +  * Based on whole genome sequences of //X. euvesicatoria//  strains, it was concluded that the //xopO//  gene has suffered from mutational inactivation by at least four different events, suggesting that selection pressure favors loss of //xopO//  function in this pathogen (Barak //et al//., 2016). 
 === Localization === === Localization ===
  
Line 36: Line 41:
  
 XopO was shown to interact with tomato 14-3-3- proteins (TFT) (Dubrow //et al//., 2018). XopO was shown to interact with tomato 14-3-3- proteins (TFT) (Dubrow //et al//., 2018).
 +
 ===== Conservation ===== ===== Conservation =====
  
 === In xanthomonads === === In xanthomonads ===
  
-Yes, in some //Xanthomonads// (e.g. //X. oryzae// pv. //oryzicola//)  (Lang //et al//., 2019) .+Yes, in some xanthomonads (//e.g.//, //X. euvesicatoria////X. oryzae//) (Lang //et al//., 2019). The //xopO//  gene is a differential T3E gene between //Xoo//  and //Xoc//  (Hajri //et al//., 2012).
  
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
-Yes (HopK1 from //Pseudomonas syringae// pv. //tomato// HopPtoK, HolPtoAB); N-terminal domain of AvrRps4 from //Pseudomonas// species; //Acidovorax// spp.)+Yes//e.g.//  //Pseudomonas syringae//  (Li //et al//., 2014)
 ===== References ===== ===== References =====
  
-Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016) Whole-genome sequences of //Xanthomonas euvesicatoria// strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Front Plant Sci. 7: 1805. DOI: [[https://doi.org/10.3389/fpls.2016.01805|10.3389/fpls.2016.01805]]+Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016) Whole-genome sequences of //Xanthomonas euvesicatoria//  strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Front Plant Sci. 7: 1805. DOI: [[https://doi.org/10.3389/fpls.2016.01805|10.3389/fpls.2016.01805]]
  
-Dubrow Z, Sunitha S, Kim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YC, Ozbaki-Yagan N, Vance H, Sessa G, Mudgett MB (2018). Tomato 14-3-3 proteins are required for //Xv3// disease resistance and interact with a subset of //Xanthomonas euvesicatoria// effectors. Mol. Plant Microbe Interact. 31: 1301-1311. DOI: [[https://doi.org/10.1094/MPMI-02-18-0048-R|10.1094/MPMI-02-18-0048-R]]+Dubrow Z, Sunitha S, Kim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YC, Ozbaki-Yagan N, Vance H, Sessa G, Mudgett MB (2018). Tomato 14-3-3 proteins are required for //Xv3//  disease resistance and interact with a subset of //Xanthomonas euvesicatoria//  effectors. Mol. Plant Microbe Interact. 31: 1301-1311. DOI: [[https://doi.org/10.1094/MPMI-02-18-0048-R|10.1094/MPMI-02-18-0048-R]]
  
 Hajri A, Brin C, Zhao S, David P, Feng JX, Koebnik R, Szurek B, Verdier V, Boureau T, Poussier S (2012). Multilocus sequence analysis and type III effector repertoire mining provide new insights into the evolutionary history and virulence of //Xanthomonas oryzae//. Mol. Plant Pathol. 13: 288-302. DOI: [[https://doi.org/10.1111/j.1364-3703.2011.00745.x|10.1111/j.1364-3703.2011.00745.x]] Hajri A, Brin C, Zhao S, David P, Feng JX, Koebnik R, Szurek B, Verdier V, Boureau T, Poussier S (2012). Multilocus sequence analysis and type III effector repertoire mining provide new insights into the evolutionary history and virulence of //Xanthomonas oryzae//. Mol. Plant Pathol. 13: 288-302. DOI: [[https://doi.org/10.1111/j.1364-3703.2011.00745.x|10.1111/j.1364-3703.2011.00745.x]]
Line 57: Line 64:
 Lang JM, Pérez-Quintero AL, Koebnik R, DuCharme E, Sarra S, Doucoure H, Keita I, Ziegle J, Jacobs JM, Oliva R, Koita O, Szurek B, Verdier V, Leach JE (2019). A pathovar of //Xanthomonas oryzae //infecting wild grasses provides insight into the evolution of pathogenicity in rice agroecosystems. Front. Plant Sci. 10: 1–15. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.3389/fpls.2019.00507]] Lang JM, Pérez-Quintero AL, Koebnik R, DuCharme E, Sarra S, Doucoure H, Keita I, Ziegle J, Jacobs JM, Oliva R, Koita O, Szurek B, Verdier V, Leach JE (2019). A pathovar of //Xanthomonas oryzae //infecting wild grasses provides insight into the evolution of pathogenicity in rice agroecosystems. Front. Plant Sci. 10: 1–15. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.3389/fpls.2019.00507]]
  
-Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]+Li G, Froehlich JE, Elowsky C, Msanne J, Ostosh AC, Zhang C, Awada T, Alfano JR, (2014). Distinct //Pseudomonas //type-III effectors use a cleavable transit peptide to target chloroplasts. Plant J. 77: 310–321. DOI: [[https://doi.org/10.1111/tpj.12396|10.1111/tpj.12396]] 
 + 
 +Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria//  type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]
  
-Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas// infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]]+Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas//  infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]]
  
-Teper D, Sunitha S, Martin GB, Sessa G (2015). Five //Xanthomonas// type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. Plant Signal. Behav. 10: e1064573. DOI: [[https://doi.org/10.1080/15592324.2015.1064573|10.1080/15592324.2015.1064573]]+Teper D, Sunitha S, Martin GB, Sessa G (2015). Five //Xanthomonas//  type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. Plant Signal. Behav. 10: e1064573. DOI: [[https://doi.org/10.1080/15592324.2015.1064573|10.1080/15592324.2015.1064573]]