User Tools

Site Tools


Sidebar

bacteria:t3e:software

This is an old revision of the document!


Software, Databases and Websites



Name Purpose URL Reference
T3SEpp T3E prediction www.szu-bioinf.org/T3SEpp Hui et al., 2020
ACNNT3 T3E prediction Source code available at: https://github.com/Lijiesky/ACNNT3 Li et al., 2020a
EP3 T3E prediction lab.malab.cn/~lijing/EP3.html Li et al., 2020b
PrediTALE TAL effector target prediction galaxy.informatik.uni-halle.de Erkes et al., 2019
Phylogenetic profiling T3E prediction www.iib.unsam.edu.ar/orgsissec/ Zalguizuri et al., 2019
WEDeepT3 T3E prediction bcmi.sjtu.edu.cn/~yangyang/WEDeepT3.html Fu & Yang, 2019
DeepT3 T3E prediction github.com/lje00006/DeepT3 Xue et al., 2019
Bastion3 T3E prediction bastion3.erc.monash.edu Wang et al., 2019
Machine-learning algorithm T3E prediction Teper et al., 2016
AnnoTALE Annotation and analysis of TAL effector genes www.jstacs.de/index.php/AnnoTALE Grau et al., 2016
GenSET T3E prediction Hobbs et al., 2016
pEffect T3E prediction services.bromberglab.org/peffect Goldberg et al., 2016
QueTAL Suite for the functional and phylogenetic comparison of TAL effectors bioinfo-web.mpl.ird.fr/cgi-bin2/quetal/quetal.cgi Pérez-Quintero et al., 2015
HMM-LDA T3E prediction Yang & Qi, 2014
Talvez TAL effector target prediction bioinfo.mpl.ird.fr/cgi-bin/talvez/talvez.cgi Pérez-Quintero et al., 2013
TALgetter TAL effector target prediction galaxy.informatik.uni-halle.de Grau et al., 2013
T3SPs T3E prediction cic.scu.edu.cn/bioinformatics/T3SPs.zip (outdated) Yang et al., 2013
cSIEVE T3E prediction Hovis et al., 2013
T3_MM T3E prediction biocomputer.bio.cuhk.edu.hk/softwares/T3_MM (R package), biocomputer.bio.cuhk.edu.hk/T3DB/T3_MM.php (outdated) Wang et al., 2013
BEAN T3E prediction systbio.cau.edu.cn/bean/ Dong et al., 2013; Dong et al., 2015
RalstoT3Edb T3E prediction & database iant.toulouse.inra.fr/T3E Peeters et al., 2013; Sabbagh et al., 2019
TALE-NT TAL effector target prediction boglab.plp.iastate.edu Doyle et al., 2012
T3DB T3E database biocomputer.bio.cuhk.edu.hk/T3DB/ (outdated) Wang et al., 2012
EffectPred T3E prediction Source code available at: www.p.chiba-u.ac.jp/lab/bisei/software/index.html (outdated) Sato et al., 2011
BPBAac T3E prediction biocomputer.bio.cuhk.edu.hk/softwares/BPBAac/ (outdated) Wang et al., 2011
HMM (EPIYA motif) T3E prediction Xu et al., 2010
T3SEdb T3E prediction & database effectors.bic.nus.edu.sg/T3SEdb/ Tay et al., 2010
Classifier T3E prediction Discriminant functions available upon request Kampenusa & Zikmanis, 2010
Classifier T3E prediction Method and data available upon request Yang et al., 2010
modlab T3E prediction gecco.org.chemie.uni-frankfurt.de/T3SS_prediction/T3SS_prediction.html (outdated) Löwer & Schneider, 2009
EffectiveT3 T3E prediction www.effectors.org Arnold et al., 2009
SIEVE T3E prediction www.sysbep.org/sieve/ (outdated) Samudrala et al., 2009; McDermott et al., 2011

References

Arnold R, Brandmaier S, Kleine F, Tischler P, Heinz E, Behrens S, Niinikoski A, Mewes HW, Horn M, Rattei T (2009). Sequence-based prediction of type III secreted proteins. PLoS Pathog. 5: e1000376. DOI: 10.1371/journal.ppat.1000376

Dong X, Lu X, Zhang Z (2015). BEAN 2.0: an integrated web resource for the identification and functional analysis of type III secreted effectors. Database (Oxford) 2015: bav064. DOI: 10.1093/database/bav064

Dong X, Zhang YJ, Zhang Z. Using weakly conserved motifs hidden in secretion signals to identify type-III effectors from bacterial pathogen genomes. PLoS One. 2013;8(2):e56632. DOI: 10.1371/journal.pone.0056632

Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, Vandyk JK, Bogdanove AJ (2012). TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res. 40: W117-W122. DOI: 10.1093/nar/gks608

Erkes A, Mücke S, Reschke M, Boch J, Grau J (2019). PrediTALE: A novel model learned from quantitative data allows for new perspectives on TALE targeting. PLoS Comput. Biol. 15: e1007206. DOI: 10.1371/journal.pcbi.1007206

Fu X, Yang Y (2019). WEDeepT3: predicting type III secreted effectors based on word embedding and deep learning. Quant. Biol. 7: 293-301. DOI: 10.1007/s40484-019-0184-7

Goldberg T, Rost B, Bromberg Y (2016). Computational prediction shines light on type III secretion origins. Sci. Rep. 6: 34516. DOI: 10.1038/srep34516

Grau J, Reschke M, Erkes A, Streubel J, Morgan RD, Wilson GG, Koebnik R, Boch J (2016). AnnoTALE: bioinformatics tools for identification, annotation, and nomenclature of TALEs from Xanthomonas genomic sequences. Sci. Rep. 6: 21077. DOI: 10.1038/srep21077

Grau J, Wolf A, Reschke M, Bonas U, Posch S, Boch J (2013). Computational predictions provide insights into the biology of TAL effector target sites. PLoS Comput. Biol. 9: e1002962. DOI: 10.1371/journal.pcbi.1002962

Hobbs CK, Porter VL, Stow ML, Siame BA, Tsang HH, Leung KY (2016). Computational approach to predict species-specific type III secretion system (T3SS) effectors using single and multiple genomes. BMC Genomics 17: 1048. DOI: 10.1186/s12864-016-3363-1

Hovis KM, Mojica S, McDermott JE, Pedersen L, Simhi C, Rank RG, Myers GS, Ravel J, Hsia RC, Bavoil PM @013). Genus-optimized strategy for the identification of chlamydial type III secretion substrates. Pathog. Dis. 69: 213-222. DOI: 10.1111/2049-632X.12070

Hui X, Chen Z, Lin M, Zhang J, Hu Y, Zeng Y, Cheng X, Ou-Yang L, Sun MA, White AP, Wang Y (2020). T3SEpp: an integrated prediction pipeline for bacterial type III secreted effectors. mSystems 5: e00288-20. DOI: 10.1128/mSystems

Kampenusa I, Zikmanis P (2010). Distinguishable codon usage and amino acid composition patterns among substrates of leaderless secretory pathways from proteobacteria. Appl. Microbiol. Biotechnol. 86: 285-293. DOI: 10.1007/s00253-009-2423-8

Li J, Li Z, Luo J, Yao Y (2020a). ACNNT3: Attention-CNN framework for prediction of sequence-based bacterial type III secreted effectors. Comput. Math. Methods Med. 2020: 3974598. DOI: 10.1155/2020/3974598

Li J, Wei L, Guo F, Zou Q (2020b). EP3: an ensemble predictor that accurately identifies type III secreted effectors. Brief. Bioinform., in press (bbaa008). DOI: 10.1093/bib/bbaa008

Löwer M, Schneider G (2009). Prediction of type III secretion signals in genomes of gram-negative bacteria. PLoS One 4: e5917. DOI: 10.1371/journal.pone.0005917. Erratum in: PLoS One (2009); 4. DOI: 10.1371/annotation/78c8fc32-b1e2-4c87-9c92-d318af980b9b

McDermott JE, Corrigan A, Peterson E, Oehmen C, Niemann G, Cambronne ED, Sharp D, Adkins JN, Samudrala R, Heffron F (2011). Computational prediction of type III and IV secreted effectors in gram-negative bacteria. Infect. Immun. 79: 23-32. DOI: 10.1128/IAI.00537-10

Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S (2013). Repertoire, unified nomenclature and evolution of the Type III effector gene set in the Ralstonia solanacearum species complex. BMC Genomics 14: 859. DOI: 10.1186/1471-2164-14-859

Pérez-Quintero AL, Lamy L, Gordon JL, Escalon A, Cunnac S, Szurek B, Gagnevin L (2015). QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically. Front. Plant Sci. 6: 545. DOI: 10.3389/fpls.2015.00545

Pérez-Quintero AL, Rodriguez-R LM, Dereeper A, López C, Koebnik R, Szurek B, Cunnac S (2013). An improved method for TAL effectors DNA-binding sites prediction reveals functional convergence in TAL repertoires of Xanthomonas oryzae strains. PLoS One 8: e68464. DOI: 10.1371/journal.pone.0068464

Sabbagh CRR, Carrere S, Lonjon F, Vailleau F, Macho AP, Genin S, Peeters N (2019). Pangenomic type III effector database of the plant pathogenic Ralstonia spp. PeerJ 7: e7346. DOI: 10.7717/peerj.7346

Samudrala R, Heffron F, McDermott JE (2009). Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems. PLoS Pathog. 5: e1000375. DOI: 10.1371/journal.ppat.1000375

Sato Y, Takaya A, Yamamoto T (2011). Meta-analytic approach to the accurate prediction of secreted virulence effectors in gram-negative bacteria. BMC Bioinformatics 12: 442. DOI: 10.1186/1471-2105-12-442

Tay DM, Govindarajan KR, Khan AM, Ong TY, Samad HM, Soh WW, Tong M, Zhang F, Tan TW (2010). T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System. BMC Bioinformatics 11: S4. DOI: 10.1186/1471-2105-11-S7-S4

Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel Xanthomonas euvesicatoria type III effector proteins by a machine-learning approach. Mol. Plant Pathol. 17: 398-411. DOI: 10.1111/mpp.12288

Wang Y, Huang H, Sun M, Zhang Q, Guo D (2012). T3DB: an integrated database for bacterial type III secretion system. BMC Bioinformatics 13: 66. DOI: 10.1186/1471-2105-13-66

Wang J, Li J, Yang B, Xie R, Marquez-Lago TT, Leier A, Hayashida M, Akutsu T, Zhang Y, Chou KC, Selkrig J, Zhou T, Song J, Lithgow T (2019). Bastion3: a two-layer ensemble predictor of type III secreted effectors. Bioinformatics 35: 2017-2028. DOI: 10.1093/bioinformatics/bty914

Wang Y, Sun M, Bao H, White AP (2013). T3_MM: a Markov model effectively classifies bacterial type III secretion signals. PLoS One 8: e58173. DOI: 10.1371/journal.pone.0058173

Wang Y, Zhang Q, Sun MA, Guo D (2011). High-accuracy prediction of bacterial type III secreted effectors based on position-specific amino acid composition profiles. Bioinformatics 27: 777-784. DOI: 10.1093/bioinformatics/btr021

Xu S, Zhang C, Miao Y, Gao J, Xu D (2010). Effector prediction in host-pathogen interaction based on a Markov model of a ubiquitous EPIYA motif. BMC Genomics 11: S1. DOI: 10.1186/1471-2164-11-S3-S1

Xue L, Tang B, Chen W, Luo J (2019). DeepT3: deep convolutional neural networks accurately identify Gram-negative bacterial type III secreted effectors using the N-terminal sequence. Bioinformatics 35: 2051-2057. DOI: 10.1093/bioinformatics/bty931

Yang X, Guo Y, Luo J, Pu X, Li M (2013). Effective identification of Gram-negative bacterial type III secreted effectors using position-specific residue conservation profiles. PLoS One 8: e84439. DOI: 10.1371/journal.pone.0084439

Yang Y, Qi S (2014). A new feature selection method for computational prediction of type III secreted effectors. Int. J. Data Min. Bioinform. 10: 440-454. DOI: 10.1504/ijdmb.2014.064894

Yang Y, Zhao J, Morgan RL, Ma W, Jiang T (2010). Computational prediction of type III secreted proteins from gram-negative bacteria. BMC Bioinformatics 11: S47. DOI: 10.1186/1471-2105-11-S1-S47

Zalguizuri A, Caetano-Anollés G, Lepek VC (2019). Phylogenetic profiling, an untapped resource for the prediction of secreted proteins and its complementation with sequence-based classifiers in bacterial type III, IV and VI secretion systems. Brief. Bioinform. 20: 1395-1402. DOI: 10.1093/bib/bby009

Further Reading

Noël LD, Denancé N, Szurek B (2013). Predicting promoters targeted by TAL effectors in plant genomes: from dream to reality. Front. Plant Sci. 4: 333. DOI: 10.3389/fpls.2013.00333


bacteria/t3e/software.1601292814.txt.gz · Last modified: 2020/09/28 13:33 by rkoebnik