User Tools

Site Tools


bacteria:t3e:xopah

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopah [2020/06/22 10:18]
jfpothier
bacteria:t3e:xopah [2022/01/05 18:30] (current)
rkoebnik [References]
Line 1: Line 1:
 ====== XopAH ====== ====== XopAH ======
  
-Author: Steven J. Roberts\\ +Author: [[https://www.researchgate.net/profile/Steven_Roberts8|Steven J. Roberts]]\\ 
-Internal reviewer: Christian Vernière \\+Internal reviewer: [[https://www.researchgate.net/profile/Christian_Verniere|Christian Vernière ]]\\
 Expert reviewer: FIXME Expert reviewer: FIXME
  
 Class: XopAH\\ Class: XopAH\\
 Family: XopAH\\ Family: XopAH\\
-Prototype: XopAH (AvrXccC(//Xanthomonas campestris// pv. //campestris// strain 8004 //Qian et al//., 2005)\\+Prototype: AvrXccC (//Xanthomonas campestris// pv. //campestris//strain 8004) (Qian //et al//., 2005)\\
 RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/ABQ10636.1|ABQ10636.1]] (440 aa) (gene [[https://www.ncbi.nlm.nih.gov/nuccore/EF529437.1|EF529437.1]] 1323 bp)\\ RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/ABQ10636.1|ABQ10636.1]] (440 aa) (gene [[https://www.ncbi.nlm.nih.gov/nuccore/EF529437.1|EF529437.1]] 1323 bp)\\
 +Synonym: AvrXccC (//Xanthomonas campestris// pv. //campestris//), AvrXccFM (//Xanthomonas campestris// pv. //campestris//) (Castañeda //et al.//, 2005)\\
 3D structure: Unknown 3D structure: Unknown
  
Line 15: Line 16:
 === How discovered? === === How discovered? ===
  
- AvrXccC was described during a genome comparison analysis between //Xanthomonas citri// pv. citri and  //X. campestris// pv. campestris Xcc strain ATCC 33913 = NCPPB 528 (Da Silva et al., 2002) and in a search of annotated genome (Castenada //et al//., 2005). +AvrXccC was described during a genome comparison analysis between //Xanthomonas citri// pv. citri and //X. campestris// pv. campestris Xcc strain ATCC 33913 = NCPPB 528 (Da Silva et al., 2002) and in a search of annotated genome (Castenada //et al//., 2005).
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-Secreted XopAH (AvrXccC) proteins were detected in culture fluid from //Xcc// 8004 and //hrcV// mutant complemented strains but not from the //hrcV// mutant (Wang //et al//., 2007). Insertion and deletion mutants affecting the locus (Xcc2109) in the type strain (Xcc 528) resulted in loss of virulence on the host Florida Broad Leaf Mustard (Castenada //et al//., 2005).+Secreted XopAH (AvrXccC) proteins were detected in culture fluid from //Xcc// 8004 and //hrcV// mutant complemented strains but not from the //hrcV// mutant (Wang //et al//., 2007). Insertion and deletion mutants affecting the locus (Xcc2109) in the type strain (Xcc 528) resulted in loss of virulence on the host Florida Broad Leaf Mustard (Castañeda //et al//., 2005).
 === Regulation === === Regulation ===
  
Line 25: Line 25:
 === Phenotypes === === Phenotypes ===
  
-This effector is required for full virulence in the susceptible host cabbage (//Brassica oleracea//) (Wang //et al//., 2007) and results in avirulence in the resistant host mustard (//Brassica napiformis//) (Castenada //et al//., 2005; He //et al//., 2007; Wang //et al//., 2007). The intact AvrB-AvrC domain of //AvrXccC<sub>8004</sub>// is essential and sufficient to elicit defense responses in an //Arabidopsis// resistant ecotype (Col-0) (Ho et al., 2013). +This effector is required for full virulence in the susceptible host cabbage (//Brassica oleracea//) (Wang //et al//., 2007) and results in avirulence in the resistant host mustard (//Brassica napiformis//) (Castaneda //et al//., 2005; He //et al//., 2007; Wang //et al//., 2007). The intact AvrB-AvrC domain of //AvrXccC<sub>8004</sub> // is essential and sufficient to elicit defense responses in an //Arabidopsis// resistant ecotype (Col-0) (Ho et al., 2013).
- +
-In the interaction  //Arabidopsis// / //Xcc// strain 8004,  //AvrXccC<sub>8004</sub>// not only presented its avirulence activity to trigger plant defense response but also possessed its virulence activity to manipulate the component involved in the ABA signalling pathway leading to an increase of ABA concentrations (Ho //et al//., 2013).+
  
 +In the interaction //Arabidopsis// / //Xcc// strain 8004, //AvrXccC<sub>8004</sub> // not only presented its avirulence activity to trigger plant defense response but also possessed its virulence activity to manipulate the component involved in the ABA signalling pathway leading to an increase of ABA concentrations (Ho //et al//., 2013).
 === Localization === === Localization ===
  
 XopAH (AvrXccC) is anchored to the plant plasma membrane, and the N‐terminal myristoylation site (amino acids 2–7: GLcaSK) is essential for its localization (Wang //et al//., 2007). XopAH (AvrXccC) is anchored to the plant plasma membrane, and the N‐terminal myristoylation site (amino acids 2–7: GLcaSK) is essential for its localization (Wang //et al//., 2007).
- 
 === Enzymatic function === === Enzymatic function ===
  
-XopAH has a Fido/AvrB domain derived from the fic (cyclic adenosine monophosphate (cAMP)-induced filamentation and doc (death on curing) domains (Kinch //et al//., 2009). Structural comparisons resulted in the inclusion of similar segments of the T3 effector AvrB from  //Pseudomonas syringae//  species (Kinch //et al//., 2009; White //et al//., 2009). T3 effectors in the XopAH group could trans-AMPylate plant host proteins. AMPylation represents a posttranslational modification used to stably modify proteins with AMP (Kinch //et al//., 2009). +XopAH has a Fido/AvrB domain derived from the fic (cyclic adenosine monophosphate (cAMP)-induced filamentation and doc (death on curing) domains (Kinch //et al//., 2009). Structural comparisons resulted in the inclusion of similar segments of the T3 effector AvrB from //Pseudomonas syringae// species (Kinch //et al//., 2009; White //et al//., 2009). T3 effectors in the XopAH group could trans-AMPylate plant host proteins. AMPylation represents a posttranslational modification used to stably modify proteins with AMP (Kinch //et al//., 2009).
 === Interaction partners === === Interaction partners ===
 +
 Not known ? Not known ?
  
Line 44: Line 42:
 === In xanthomonads === === In xanthomonads ===
  
-In //Xanthomonas campestris// pv. campestris.  XopAH is also present in  //X. arboricola// pv. juglandis within strains causing Walnut Blight but is absent from the strains causing vertical oozing canker (Cesbron et al., 2015). +In //Xanthomonas campestris// pv. campestris. XopAH is also present in //X. arboricola// pv. juglandis within strains causing Walnut Blight but is absent from the strains causing vertical oozing canker (Cesbron et al., 2015).
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
-Yes (AvrB //Pseudomonas savastanoi//, //Pseudomonas syringae//) +Yes (AvrB //Pseudomonas savastanoi//, //Pseudomonas syringae//(Lee //et al.//, 2004; Desveaux //et al.//, 2007)
 ===== References ===== ===== References =====
  
-Castenada A, Reddy JD, El-Yacoubi B, Gabriel DW (2005). Mutagenesis of all eight avr genes in //Xanthomonas campestris// pv. //campestris// had no detected effect on pathogenicity, but one avr gene affected race specificity. Mol. Plant-Microbe Interact. 18: 1306-1317. DOI: [[https://doi.org/10.1094/MPMI-18-1306|10.1094/MPMI-18-1306]].+Castañeda A, Reddy JD, El-Yacoubi B, Gabriel DW (2005). Mutagenesis of all eight avr genes in //Xanthomonas campestris// pv. //campestris// had no detected effect on pathogenicity, but one //avr// gene affected race specificity. Mol. Plant Microbe Interact. 18: 1306-1317. DOI: [[https://doi.org/10.1094/MPMI-18-1306|10.1094/MPMI-18-1306]] 
 + 
 +Cesbron S, Briand M, Essakhi S, Gironde S, Boureau T, Manceau C, Fischer-Le Saux M, Jacques MA (2015)Comparative genomics of pathogenic and nonpathogenic strains of //Xanthomonas arboricola// unveil molecular and evolutionary events linked to pathoadaptation. Front. Plant Sci. 6: 1126. DOI: [[https://doi.org/10.3389/fpls.2015.01126|10.3389/fpls.2015.01126]] 
 + 
 +da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA, Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos Santos M, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two //Xanthomonas// pathogens with differing host specificities. Nature 417: 459-463. DOI: [[https://doi.org/10.1038/417459a|10.1038/417459a]]
  
-CesbronS.BriandM.EssakhiS.GirondeS., BoureauT., Manceau, C., Fischer-Le Saux, M., and Jacques, MA. 2015.</font><font 10.5pt/inherit;;inherit;;inherit>Comparative genomics of pathogenic and nonpathogenic strains of  CKGE_TMP_i Xanthomonas arboricola CKGE_TMP_i  unveil molecular and evolutionary events linked to pathoadaptationFrontiers in plant science 6:1126.+Desveaux DSinger AUWu AJMcNulty BCMusselwhite LNimchuk ZSondek JDangl JL (2007)Type III effector activation via nucleotide bindingphosphorylationand host target interactionPLoS Pathog3: e48DOI: [[https://doi.org/10.1371/journal.ppat.0030048|10.1371/journal.ppat.0030048]]. Erratum in: PLoS Pathog. (2007) 3: e90.
  
-Da Silva, A. C., Ferro, J. A., Reinach, F. C., Farah, C. S., Furlan, L. R.QuaggioR. B.Monteiro-VitorelloC. B.Van SluysM. A.Almeida, N. F., Alves, L. M., Do Amaral, A. M., Bertolini, M. C., Camargo, L. E., Camarotte, G., Cannavan, F., Cardozo, J.ChambergoF.CiapinaL. P.CicarelliR. M.Coutinho, L. L., Cursino-Santos, J. R., El-Dorry, H., Faria, J. B.Ferreira, A. J.Ferreira, RC., Ferro, MI., Formighieri, EF., Franco, MC., Greggio, C. C., Gruber, A., Katsuyama, A. M., Kishi, L. T., Leite, R. P., Lemos, E. G., Lemos, M. V., Locali, E. C., Machado, M. A., Madeira, A. M., Martinez-Rossi, NM., Martins, E. C., Meidanis, J., Menck, C. F., Miyaki, C. Y., Moon, D. H., Moreira, L. M., Novo, M. T., Okura, V. K., Oliveira, M. C., Oliveira, V. R., Pereira, H. A., Rossi, A., Sena, J. A., Silva, C., De Souza, R. F., Spinola, L. A., Takita, M. A., Tamura, R. E., Teixeira, E. C., Tezza, R. I., Trindade dos Santos, M., Truffi, D., Tsai, S. M., White, F. F., Setubal, J. C., and Kitajima, J. P. 2002. Comparison of the genomes of two  CKGE_TMP_i Xanthomonas CKGE_TMP_i  pathogens with differing host specificities. Nature 417:459-463.+He YQZhang L, Jiang BLZhang ZCXu RQTang DJQin JJiang WZhang XLiao J, Cao JRZhang SSWei MLLiang XXLu GTFeng JXChen B, Cheng J, Tang JL (2007)Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen //Xanthomonas campestris// pv//campestris//Genome Biol8: R218DOI: [[https://doi.org/10.1186/gb-2007-8-10-r218|10.1186/gb-2007-8-10-r218]]
  
-<font 10.5pt/inherit;;inherit;;white>HeY. Q.ZhangL.JiangBL., Zhang, Z. C., Xu, R. Q., Tang, D. J., Qin, J., Jiang, W., Zhang, X., Liao, J., Cao, J. R., Zhang, S. S., Wei, M. L., Liang, X. X., Lu, G. T., Feng, J. X., Chen, B., Cheng, J., and Tang, J. L. 2007. Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen  //Xanthomonas campestris// pv. campestris. Genome Biology 8:R218.+Ho YPTan CMLi MYLin HDeng WLYang JY (2013)The AvrB_AvrC Domain of AvrXccC of //Xanthomonas campestris// pv. campestris is required to elicit plant defense responses and manipulate ABA homeostasisMol. Plant Microbe Interact. 26419-430DOI: [[https://doi.org/10.1094/mpmi-06-12-0164-r|10.1094/mpmi-06-12-0164-r]]
  
-HoY. P.TanC. M., LiM. Y., Lin, H., Deng, W. L., and Yang, JY2013. The AvrB_AvrC Domain of AvrXccC of  //Xanthomonas campestris// pvcampestris Is Required to Elicit Plant Defense Responses and Manipulate ABA HomeostasisMolPlant-Microbe Interact26:419-430.+Kinch LNYarbrough MLOrth KGrishin NV (2009)Fidoa novel AMPylation domain common to FicDoc, and AvrBPLoS One 4: e5818DOI: [[https://doi.org/10.1371/journal.pone.0005818|10.1371/journal.pone.0005818]]
  
-KinchL. N., Yarbrough, M. L., Orth, K.and GrishinN. V. 2009. Fidoa Novel AMPylation Domain Common to FicDocand AvrB. Plos One 4e5818.+Lee CCWood MDNg K, Andersen CBLiu YLuginbühl PSpraggon GKatagiri F (2004). Crystal structure of the type III effector AvrB from //Pseudomonas syringae//Structure 12487-494. DOI: [[https://doi.org/10.1016/j.str.2004.02.013|10.1016/j.str.2004.02.013]]
  
-Qian W, Jia Y, Ren SX, He Y Q, Feng JX, Lu LF, Sun Q, Ying G, Tang DJ, Tang H, Wu W, Hao P, Wang L, Jiang BL, Zeng S, Gu WY, Lu G, Rong L, Tian Y, Yao Z, Fu G, Chen B, Fang R, Qiang B, Chen Z, Zhao GP, Tang JL and He C (2005). Comparative and functional genomic analyses of the pathogenicity of phytopathogen //Xanthomonas campestris// pv. //campestris.// Genome Research 15: 757-767. DOI: [[https://doi.org/10.1101/gr.3378705|10.1101/gr.3378705]].+Qian W, Jia Y, Ren SX, He Y Q, Feng JX, Lu LF, Sun Q, Ying G, Tang DJ, Tang H, Wu W, Hao P, Wang L, Jiang BL, Zeng S, Gu WY, Lu G, Rong L, Tian Y, Yao Z, Fu G, Chen B, Fang R, Qiang B, Chen Z, Zhao GP, Tang JLHe C (2005). Comparative and functional genomic analyses of the pathogenicity of phytopathogen //Xanthomonas campestris// pv. //campestris.// Genome Res. 15: 757-767. DOI: [[https://doi.org/10.1101/gr.3378705|10.1101/gr.3378705]]
  
-Wang L, Tang X, He C (2007). The bifunctional effector AvrXccC of //Xanthomonas campestris// pv. //campestris// requires plasma membrane-anchoring for host recognition. Mol. Plant Pathol. 8: 491-501. DOI: [[https://doi.org/10.1111/j.1364-3703.2007.00409.x|10.1111/j.1364-3703.2007.00409.x]].+Wang L, Tang X, He C (2007). The bifunctional effector AvrXccC of //Xanthomonas campestris// pv. //campestris// requires plasma membrane-anchoring for host recognition. Mol. Plant Pathol. 8: 491-501. DOI: [[https://doi.org/10.1111/j.1364-3703.2007.00409.x|10.1111/j.1364-3703.2007.00409.x]]
  
-<font 10.5pt/inherit;;inherit;;inherit>White, F. F., PotnisN., Jones, J. B., and KoebnikR2009. The type III effectors of //Xanthomonas//. Mol. Plant Pathol. 10:749-766.+White FF, Potnis N, Jones JB, Koebnik R (2009). The type III effectors of //Xanthomonas//. Mol. Plant Pathol. 10: 749-766. DOI: [[https://doi.org/10.1111/j.1364-3703.2009.00590.x|10.1111/j.1364-3703.2009.00590.x]]
  
bacteria/t3e/xopah.1592813886.txt.gz · Last modified: 2020/06/22 10:18 by jfpothier