User Tools

Site Tools


bacteria:t3e:xopaj

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopaj [2020/09/29 22:21]
lindsay.triplett_ct.gov
bacteria:t3e:xopaj [2022/06/22 14:01] (current)
rkoebnik [Biological function]
Line 3: Line 3:
 Authors: [[https://www.researchgate.net/profile/Ralf_Koebnik|Ralf Koebnik]] & Trainees from the 2<sup>nd</sup>  EuroXanth Training School ([[https://www.researchgate.net/profile/Daiva_Burokiene|Daiva Burokienė]], [[https://www.researchgate.net/profile/ermic_Edyta|Edyta Đermić]], [[https://www.researchgate.net/profile/Dagmar_Stehlikova|Dagmar Stehlikova]], [[https://www.researchgate.net/profile/Mariya_Stoyanova|Mariya Stoyanova]])\\ Authors: [[https://www.researchgate.net/profile/Ralf_Koebnik|Ralf Koebnik]] & Trainees from the 2<sup>nd</sup>  EuroXanth Training School ([[https://www.researchgate.net/profile/Daiva_Burokiene|Daiva Burokienė]], [[https://www.researchgate.net/profile/ermic_Edyta|Edyta Đermić]], [[https://www.researchgate.net/profile/Dagmar_Stehlikova|Dagmar Stehlikova]], [[https://www.researchgate.net/profile/Mariya_Stoyanova|Mariya Stoyanova]])\\
 Internal reviewer: [[https://www.researchgate.net/profile/Joel_Pothier2|Joël F. Pothier]]\\ Internal reviewer: [[https://www.researchgate.net/profile/Joel_Pothier2|Joël F. Pothier]]\\
-Expert reviewer: Lindsay Triplett+Expert reviewer: [[https://www.researchgate.net/profile/Lindsay_Triplett|Lindsay Triplett]] 
 + 
 +Class: XopAJ\\ 
 +Family: XopAJ\\ 
 +Prototype: XopAJ (//Xanthomonas oryzae// pv. //oryzicola//; strain BLS256)\\ 
 +RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_014504815.1|WP_014504815.1 ]] (obsolete version suggested to be replaced by [[https://www.ncbi.nlm.nih.gov/protein/WP_153816726.1|WP_153816726.1]]) (421 aa)\\ 
 +Synonym: AvrRxo1\\ 
 +3D structure: [[https://www.rcsb.org/structure/4Z8Q|4Z8Q]], [[https://www.rcsb.org/structure/4Z8T|4Z8T]], [[https://www.rcsb.org/structure/4Z8U|4Z8U]], [[https://www.rcsb.org/structure/4Z8V|4Z8V]] (Han //et al.//, 2015) 
 +====== XopAJ ====== 
 + 
 +Authors: [[https://www.researchgate.net/profile/Ralf_Koebnik|Ralf Koebnik]] & Trainees from the 2<sup>nd</sup>  EuroXanth Training School ([[https://www.researchgate.net/profile/Daiva_Burokiene|Daiva Burokienė]], [[https://www.researchgate.net/profile/ermic_Edyta|Edyta Đermić]], [[https://www.researchgate.net/profile/Dagmar_Stehlikova|Dagmar Stehlikova]], [[https://www.researchgate.net/profile/Mariya_Stoyanova|Mariya Stoyanova]])\\ 
 +Internal reviewer: [[https://www.researchgate.net/profile/Joel_Pothier2|Joël F. Pothier]]\\ 
 +Expert reviewer: [[https://www.researchgate.net/profile/Lindsay_Triplett|Lindsay Triplett]]
  
 Class: XopAJ\\ Class: XopAJ\\
Line 37: Line 49:
   * AvrRxo1 is a kinase that converts NAD to 3'-NADP and NAADP to 3'-NAADP. Mutation of the catalytic aspartic acid residue D<sub>193</sub>  abolished AvrRxo1 kinase activity and several phenotypes of AvrRxo1, including toxicity in yeast, bacteria, and plants, suppression of the flg22-triggered ROS burst, and ability to trigger an //R//  gene-mediated hypersensitive response in rice. A mutation in the Walker A ATP-binding motif, which reduced 3'-NADP production by roughly 90%, abolished the toxicity of AvrRxo1 in bacteria, yeast, and plants. However, this mutation did not abolish the virulence enhancement, ROS suppression, or HR-triggering phenotypes of AvrRxo1. These results demonstrate that AvrRxo1 kinase activity is required for all the known phenotypes of AvrRxo1, but that toxicity is dose-dependent (Shidore //et al.//, 2017).   * AvrRxo1 is a kinase that converts NAD to 3'-NADP and NAADP to 3'-NAADP. Mutation of the catalytic aspartic acid residue D<sub>193</sub>  abolished AvrRxo1 kinase activity and several phenotypes of AvrRxo1, including toxicity in yeast, bacteria, and plants, suppression of the flg22-triggered ROS burst, and ability to trigger an //R//  gene-mediated hypersensitive response in rice. A mutation in the Walker A ATP-binding motif, which reduced 3'-NADP production by roughly 90%, abolished the toxicity of AvrRxo1 in bacteria, yeast, and plants. However, this mutation did not abolish the virulence enhancement, ROS suppression, or HR-triggering phenotypes of AvrRxo1. These results demonstrate that AvrRxo1 kinase activity is required for all the known phenotypes of AvrRxo1, but that toxicity is dose-dependent (Shidore //et al.//, 2017).
   * AvrRxo1 targets the cysteine protease RD21A, which is required for drought-induced immunity (Liu //et al.//, 2020).   * AvrRxo1 targets the cysteine protease RD21A, which is required for drought-induced immunity (Liu //et al.//, 2020).
 +  * AvrRxo1 enhances //Xoc//  virulence and inhibits stomatal immunity by targeting and degrading rice OsPDX1 (pyridoxal phosphate synthase), thereby reducing vitamin B6 (VB6) levels in rice (Liu //et al.//, 2022).
  
 === Localization === === Localization ===
Line 44: Line 57:
 === Enzymatic function === === Enzymatic function ===
  
-AvrRxo1 has a T4 polynucleotide kinase domain (Han //et al.//, 2015; Wu //et al//., 2015).+AvrRxo1 has a T4 polynucleotide kinase domain (Han //et al.//, 2015; Wu //et al//., 2015). AvrRxo1 is an ATP-dependent protease (Liu //et al.//, 2022).
  
 AvrRxo1 is a phosphotransferase that produces two novel metabolites by phosphorylating nicotinamide/nicotinic acid adenine dinucleotide at the adenosine 3'-hydroxyl group. Both products of AvrRxo1, 3'-NADP and 3'-nicotinic acid adenine dinucleotide phosphate (3'-NAADP), had been used before as inhibitors or signaling molecules but were regarded as "artificial" compounds until then (Schuebel //et al.//, 2016). AvrRxo1 has weak phosphorylation activity on some other nucleotides including ATP (Scheubel //et al. //2016) AvrRxo1 is a phosphotransferase that produces two novel metabolites by phosphorylating nicotinamide/nicotinic acid adenine dinucleotide at the adenosine 3'-hydroxyl group. Both products of AvrRxo1, 3'-NADP and 3'-nicotinic acid adenine dinucleotide phosphate (3'-NAADP), had been used before as inhibitors or signaling molecules but were regarded as "artificial" compounds until then (Schuebel //et al.//, 2016). AvrRxo1 has weak phosphorylation activity on some other nucleotides including ATP (Scheubel //et al. //2016)
  
-AvrRxo1 phosphorylates NAD //in planta//, and its kinase catalytic sites are necessary for toxicity, suppression of PAMP-triggered immunity, and activation of Rxo1-mediated resistance (Shidore //et al.//, 2017). In a metabolomic profile, 3'-NADP accumulated upon expression of AvrRxo1 in //E. coli//, yeast, //N. benthamiana//  and in rice leaves infected with //avrRxo1//-expressing strains of //X. oryzae//, suggesting that the AvrRxo1 product is not utilized or degraded by the cell (Shidore //et al.//, 2017). 3'-NADP was the only metabolite observed to accumulate in an //avrRxo1//-dependent manner, and it is not known whether NAADP is phosphorylated by AvrRxo1 //in planta // (Shidore //et al.//, 2017).+AvrRxo1 phosphorylates NAD //in planta//, and its kinase catalytic sites are necessary for toxicity, suppression of PAMP-triggered immunity, and activation of Rxo1-mediated resistance (Shidore //et al.//, 2017). In a metabolomic profile, 3'-NADP accumulated upon expression of AvrRxo1 in //E. coli//, yeast, //N. benthamiana//  and in rice leaves infected with //avrRxo1//-expressing strains of //X. oryzae//, suggesting that the AvrRxo1 product is not utilized or degraded by the cell (Shidore //et al.//, 2017). 3'-NADP was the only metabolite observed to accumulate in an //avrRxo1//-dependent manner, and it is not known whether NAADP is phosphorylated by AvrRxo1 //in planta //  (Shidore //et al.//, 2017).
  
 === Interaction partners === === Interaction partners ===
Line 57: Line 70:
  
 AvrRxo1 interacts with the //Arabidopsis thaliana//  ubiquitin E3 ligase SINAT4 and the cysteine protease RD21A during transient expression in //N. benthamiana. //Interaction enhanced SINAT4 activity and promoted the degradation of RD21A //in vivo, //in a manner dependent on the AvrRxo1 ATP-binding motif (Liu //et al.//, 2020). AvrRxo1 interacts with the //Arabidopsis thaliana//  ubiquitin E3 ligase SINAT4 and the cysteine protease RD21A during transient expression in //N. benthamiana. //Interaction enhanced SINAT4 activity and promoted the degradation of RD21A //in vivo, //in a manner dependent on the AvrRxo1 ATP-binding motif (Liu //et al.//, 2020).
 +
 +AvrRxo1 interacts with OsPDX1.2 in a yeast two-hybrid assay and in planta, as assessed by split YFP and coIP assays (Liu //et al.//, 2022).
  
 ===== Conservation ===== ===== Conservation =====
Line 72: Line 87:
 Yes (//Acidovorax//  spp., //Paraburkholderia andropogonis//) (Triplett //et al.//, 2016). Yes (//Acidovorax//  spp., //Paraburkholderia andropogonis//) (Triplett //et al.//, 2016).
  
-Homologs of the //avrRxo1:arc1//  operon in which the avrRxo1 homolog lacks a type III secretion signal are found in other environmental microbes, including the filamentous myxobacteria //Cystobacter fuscus//  and uncultured candidate //Saccharimonas//  and //Parcubacteria// spp. (Triplett// et al.//  2016).+Homologs of the //avrRxo1:arc1//  operon in which the avrRxo1 homolog lacks a type III secretion signal are found in other environmental microbes, including the filamentous myxobacteria //Cystobacter fuscus//  and uncultured candidate //Saccharimonas//  and //Parcubacteria//  spp. (Triplett// et al.//  2016). 
 + 
 +===== Conservation ===== 
 + 
 +=== In xanthomonads === 
 + 
 +Yes (e.g. //X. alfalfae//, //X. axonopodis//, //X. bromi//, //X. euvesicatoria//, //X. oryzae//, //X. translucens//). 
 + 
 +AvrRxo1 appears to be widely conserved in Asian strains of //Xoc//  but much less present in African strains, which implies that deployment of //Rxo1//-containing varieties may not be an appropriate breeding strategy for controlling bacterial leaf streak disease in Africa (Wonni //et al.//, 2014). 
 + 
 +AvrRxo1 is conserved in nearly all strains of //X. euvesicatoria//, but is incompletely distributed in other species surveyed (Triplett et al. 2016, Barak et al. 2016). Strains with inactivated //avrRxo1//  genes were frequently observed to harbor sequence insertions in the toxic //avrRxo1//  gene, while the toxin-protective //arc1//  gene remained intact (Triplett //et al.,//  2016). 
 + 
 +=== In other plant pathogens/symbionts === 
 + 
 +Yes (//Acidovorax//  spp., //Paraburkholderia andropogonis//) (Triplett //et al.//, 2016). 
 + 
 +Homologs of the //avrRxo1:arc1//  operon in which the avrRxo1 homolog lacks a type III secretion signal are found in other environmental microbes, including the filamentous myxobacteria //Cystobacter fuscus//  and uncultured candidate //Saccharimonas//  and //Parcubacteria//  spp. (Triplett// et al.//  2016).
  
 ===== References ===== ===== References =====
Line 78: Line 109:
 Bahadur RP, Basak J (2014). Molecular modeling of protein-protein interaction to decipher the structural mechanism of nonhost resistance in rice. J. Biomol. Struct. Dyn. 32: 669-681. DOI: [[https://doi.org/10.1080/07391102.2013.787370|10.1080/07391102.2013.787370]] Bahadur RP, Basak J (2014). Molecular modeling of protein-protein interaction to decipher the structural mechanism of nonhost resistance in rice. J. Biomol. Struct. Dyn. 32: 669-681. DOI: [[https://doi.org/10.1080/07391102.2013.787370|10.1080/07391102.2013.787370]]
  
-Han Q, Zhou C, Wu S, Liu Y, Triplett L, Miao J, Tokuhisa J, Deblais L, Robinson H, Leach JE, Li J, Zhao B (2015). Crystal structure of //Xanthomonas//  AvrRxo1-ORF1, a type III effector with a polynucleotide kinase domain, and its interactor AvrRxo1-ORF2. Structure 23: 1900-1909. DOI: [[https://doi.org/10.1016/j.str.2015.06.030|10.1016/j.str.2015.06.030]]+Han Q, Zhou C, Wu S, Liu Y, Triplett L, Miao J, Tokuhisa J, Deblais L, Robinson H, Leach JE, Li J, Zhao B (2015). Crystal structure of //Xanthomonas// AvrRxo1-ORF1, a type III effector with a polynucleotide kinase domain, and its interactor AvrRxo1-ORF2. Structure 23: 1900-1909. DOI: [[https://doi.org/10.1016/j.str.2015.06.030|10.1016/j.str.2015.06.030]]
  
 Liu H, Chang Q, Feng W, Zhang B, Wu T, Li N, Yao F, Ding X, Chu Z (2014). Domain dissection of AvrRxo1 for suppressor, avirulence and cytotoxicity functions. PLoS One 9: e113875. DOI: [[https://doi.org/10.1371/journal.pone.0113875|10.1371/journal.pone.0113875]] Liu H, Chang Q, Feng W, Zhang B, Wu T, Li N, Yao F, Ding X, Chu Z (2014). Domain dissection of AvrRxo1 for suppressor, avirulence and cytotoxicity functions. PLoS One 9: e113875. DOI: [[https://doi.org/10.1371/journal.pone.0113875|10.1371/journal.pone.0113875]]
  
-Liu Y, Wang K, Cheng Q, Kong D, Zhang X, Wang Z, Wang Q, Qi X, Yan J, Chu J, Ling H, Li Q, Miao J, Zhao B (2020). Cysteine protease RD21A regulated by E3 ligase SINAT4 is required for drought-induced resistance to //Pseudomonas syringae//  in Arabidopsis. J. Exp. Bot., eraa255 (in press). DOI: [[https://doi.org/10.1093/jxb/eraa255|10.1093/jxb/eraa255]]+Liu H, Lu C, Li Y, Wu T, Zhang B, Liu B, Feng W, Xu Q, Dong H, He S, Chu Z, Ding X (2022). The bacterial effector AvrRxo1 inhibits vitamin B6 biosynthesis to promote infection in rice. Plant Commun. 3: 100324. DOI: [[https://doi.org/10.1016/j.xplc.2022.100324|10.1016/j.xplc.2022.100324]] 
 + 
 +Liu Y, Wang K, Cheng Q, Kong D, Zhang X, Wang Z, Wang Q, Qi X, Yan J, Chu J, Ling H, Li Q, Miao J, Zhao B (2020). Cysteine protease RD21A regulated by E3 ligase SINAT4 is required for drought-induced resistance to //Pseudomonas syringae// in Arabidopsis. J. Exp. Bot. 71: 5562-5576. DOI: [[https://doi.org/10.1093/jxb/eraa255|10.1093/jxb/eraa255]]
  
-Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria//  type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]+Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]
  
-Salomon D, Dar D, Sreeramulu S, Sessa G (2011). Expression of //Xanthomonas////campestris//  pv. //vesicatoria//  type III effectors in yeast affects cell growth and viability. Mol. Plant Microbe Interact. 24: 305-314. DOI: [[https://doi.org/10.1094/MPMI-09-10-0196|10.1094/MPMI-09-10-0196]]+Salomon D, Dar D, Sreeramulu S, Sessa G (2011). Expression of //Xanthomonas////campestris// pv. //vesicatoria// type III effectors in yeast affects cell growth and viability. Mol. Plant Microbe Interact. 24: 305-314. DOI: [[https://doi.org/10.1094/MPMI-09-10-0196|10.1094/MPMI-09-10-0196]]
  
 Schuebel F, Rocker A, Edelmann D, Schessner J, Brieke C, Meinhart A (2016). 3'-NADP and 3'-NAADP, two metabolites formed by the bacterial type III effector AvrRxo1. J. Biol. Chem. 291: 22868-22880. DOI: [[https://doi.org/10.1074/jbc.M116.751297|10.1074/jbc.M116.751297]] Schuebel F, Rocker A, Edelmann D, Schessner J, Brieke C, Meinhart A (2016). 3'-NADP and 3'-NAADP, two metabolites formed by the bacterial type III effector AvrRxo1. J. Biol. Chem. 291: 22868-22880. DOI: [[https://doi.org/10.1074/jbc.M116.751297|10.1074/jbc.M116.751297]]
Line 94: Line 127:
 Triplett LR, Shidore T, Long J, Miao J, Wu S, Han Q, Zhou C, Ishihara H, Li J, Zhao B, Leach JE (2016). AvrRxo1 Is a bifunctional type III secreted effector and toxin-antitoxin system component with homologs in diverse environmental contexts. PLoS One 11: e0158856. DOI: [[https://doi.org/10.1371/journal.pone.0158856|10.1371/journal.pone.0158856]] Triplett LR, Shidore T, Long J, Miao J, Wu S, Han Q, Zhou C, Ishihara H, Li J, Zhao B, Leach JE (2016). AvrRxo1 Is a bifunctional type III secreted effector and toxin-antitoxin system component with homologs in diverse environmental contexts. PLoS One 11: e0158856. DOI: [[https://doi.org/10.1371/journal.pone.0158856|10.1371/journal.pone.0158856]]
  
-Wonni I, Cottyn B, Detemmerman L, Dao S, Ouedraogo L, Sarra S, Tekete C, Poussier S, Corral R, Triplett L, Koita O, Koebnik R, Leach J, Szurek B, Maes M, Verdier V (2014). Analysis of //Xanthomonas oryzae//  pv. //oryzicola//  population in Mali and Burkina Faso reveals a high level of genetic and pathogenic diversity. Phytopathology 104: 520-531. DOI: [[https://doi.org/10.1094/PHYTO-07-13-0213-R|10.1094/PHYTO-07-13-0213-R]]+Wonni I, Cottyn B, Detemmerman L, Dao S, Ouedraogo L, Sarra S, Tekete C, Poussier S, Corral R, Triplett L, Koita O, Koebnik R, Leach J, Szurek B, Maes M, Verdier V (2014). Analysis of //Xanthomonas oryzae// pv. //oryzicola// population in Mali and Burkina Faso reveals a high level of genetic and pathogenic diversity. Phytopathology 104: 520-531. DOI: [[https://doi.org/10.1094/PHYTO-07-13-0213-R|10.1094/PHYTO-07-13-0213-R]]
  
-Wu S (2015). Structural and functional characterization of a //Xanthomonas//  type III effector. PhD dissertation. Link: [[https://vtechworks.lib.vt.edu/handle/10919/73219|https://vtechworks.lib.vt.edu/handle/10919/73219]]+Wu S (2015). Structural and functional characterization of a //Xanthomonas// type III effector. PhD dissertation. Link: [[https://vtechworks.lib.vt.edu/handle/10919/73219|https://vtechworks.lib.vt.edu/handle/10919/73219]]
  
-Xie XW, Yu J, Xu JL, Zhou YL, Li ZK (2007). Introduction of a non-host gene //Rxo1//  cloned from maize resistant to rice bacterial leaf streak into rice varieties. Sheng Wu Gong Cheng Xue Bao [Chinese J. Biotechnol.] 23: 607-611. DOI: [[https://doi.org/10.1016/S1872-2075(07)60039-9|10.1016/S1872-2075(07)60039-9]]+Xie XW, Yu J, Xu JL, Zhou YL, Li ZK (2007). Introduction of a non-host gene //Rxo1// cloned from maize resistant to rice bacterial leaf streak into rice varieties. Sheng Wu Gong Cheng Xue Bao [Chinese J. Biotechnol.] 23: 607-611. DOI: [[https://doi.org/10.1016/S1872-2075(07)60039-9|10.1016/S1872-2075(07)60039-9]]
  
-Zhao B, Ardales EY, Raymundo A, Bai J, Trick HN, Leach JE, Hulbert SH (2004). The //avrRxo1//  gene from the rice pathogen //Xanthomonas oryzae//  pv. //oryzicola//  confers a nonhost defense reaction on maize with resistance gene //Rxo1//. Mol. Plant Microbe Interact. 17: 771-779. DOI: [[https://doi.org/10.1094/MPMI.2004.17.7.771|10.1094/MPMI.2004.17.7.771]]+Zhao B, Ardales EY, Raymundo A, Bai J, Trick HN, Leach JE, Hulbert SH (2004). The //avrRxo1// gene from the rice pathogen //Xanthomonas oryzae// pv. //oryzicola// confers a nonhost defense reaction on maize with resistance gene //Rxo1//. Mol. Plant Microbe Interact. 17: 771-779. DOI: [[https://doi.org/10.1094/MPMI.2004.17.7.771|10.1094/MPMI.2004.17.7.771]]
  
 Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S (2005). A maize resistance gene functions against bacterial streak disease in rice. Proc. Natl. Acad. Sci. USA 102: 15383-15388. DOI: [[https://doi.org/10.1073/pnas.0503023102|10.1073/pnas.0503023102]] Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S (2005). A maize resistance gene functions against bacterial streak disease in rice. Proc. Natl. Acad. Sci. USA 102: 15383-15388. DOI: [[https://doi.org/10.1073/pnas.0503023102|10.1073/pnas.0503023102]]
  
bacteria/t3e/xopaj.1601410884.txt.gz · Last modified: 2020/09/29 22:21 by lindsay.triplett_ct.gov