User Tools

Site Tools


bacteria:t3e:xopal1

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopal1 [2020/07/03 09:39]
rkoebnik
bacteria:t3e:xopal1 [2020/08/11 14:34] (current)
rkoebnik [XopAL1]
Line 2: Line 2:
  
 Author: [[https://www.researchgate.net/profile/Matthieu_Arlat|Matthieu Arlat]]\\ Author: [[https://www.researchgate.net/profile/Matthieu_Arlat|Matthieu Arlat]]\\
-Internal reviewer: FIXME \\+Internal reviewer: [[https://www.researchgate.net/profile/Joana_Costa12|Joana Costa]]\\
 Expert reviewer: FIXME Expert reviewer: FIXME
  
Line 15: Line 15:
 === How discovered? === === How discovered? ===
  
-Screen for //Xanthomonas campestris// pv. //campestris// 8004 (Xcc8004genes with a PIP Box in their promoter and Hrp-dependent translocation (Jiang //et al//., 2009). +XopAL was first identified in //X. campestris// pv. //campestris// (//Xcc//) strain 8004 as a candidate type III secreted (T3S)-effector due to the presence of plant-inducible promoter (PIP) box in its gene, XC_2995 (Jiang //et al.//, 2009). 
-=== (Experimental) evidence for being a T3E ===+=== (Experimental) evidence for being a type III secreted effector (T3E===
  
 Construction of a chimeric protein between the N-terminal region of XC_2995 (XopAL1) and a truncated AvrBS1 protein (AvrBS1<sub>59-445</sub>). The chimeric gene was introduced by conjugation into Xcc8004 ∆AvrBS1 mutant or derivative of this strain mutated in //hrpF// or //hpaB// genes. The transconjugants were tested for HR elicitation on pepper ECW-10R (Jiang //et al//., 2009). These experiments suggest that the N-terminal part of XopAL1 is able to allow the translocation of the chimeric protein into pepper cells in an Hrp-dependent manner. Construction of a chimeric protein between the N-terminal region of XC_2995 (XopAL1) and a truncated AvrBS1 protein (AvrBS1<sub>59-445</sub>). The chimeric gene was introduced by conjugation into Xcc8004 ∆AvrBS1 mutant or derivative of this strain mutated in //hrpF// or //hpaB// genes. The transconjugants were tested for HR elicitation on pepper ECW-10R (Jiang //et al//., 2009). These experiments suggest that the N-terminal part of XopAL1 is able to allow the translocation of the chimeric protein into pepper cells in an Hrp-dependent manner.
 === Regulation === === Regulation ===
  
-The expression of XopAL1 gene was shown to be positively regulated by hrpX (Jiang //et al//., 2009) and hrpG (Jiang //et al//., 2009; Roux //et al//., 2015). Presence of a PIP box (Jiang //et al//., 2009; Bogdanove //et al//., 2013; Roux //et al//., 2015).+The expression of //xopAL1// gene was shown to be positively regulated by //hrpX// (Jiang //et al//., 2009) and //hrpG// (Jiang //et al//., 2009; Roux //et al//., 2015). Presence of a PIP box (Jiang //et al//., 2009; Bogdanove //et al//., 2013; Roux //et al//., 2015).
 === Phenotypes === === Phenotypes ===
  
-XopAL of Xcc8004 is required for full pathogenicity on Chinese radish (//Raphanus sativus// var. //radiculus//) cv. Mashenshong (Jiang //et al//., 2009).+XopAL1<sub>Xcc8004</sub> is required for full virulence and growth of //X. campestris// pv. //campestris// in the host plant Chinese radish (Jiang //et al.//, 2009).
 === Localization === === Localization ===
  
Line 41: Line 41:
 === In xanthomonads === === In xanthomonads ===
  
-Yes, //X. campestris//, //X. translucens//+Yes, //X. campestris//, //X. translucens, X. arboricola (//Cesbron// et al., 2015)//
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
Line 50: Line 50:
  
 Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV, Patil PB, Van Sluys MA, Ryan RP, Meyer DF, Han SW, Aparna G, Rajaram M, Delcher AL, Phillippy AM, Puiu D, Schatz MC, Shumway M, Sommer DD, Trapnell C, Benahmed F, Dimitrov G, Madupu R, Radune D, Sullivan S, Jha G, Ishihara H, Lee SW, Pandey A, Sharma V, Sriariyanun M, Szurek B, Vera-Cruz CM, Dorman KS, Ronald PC, Verdier V, Dow JM, Sonti RV, Tsuge S, Brendel VP, Rabinowicz PD, Leach JE, White FF, Salzberg SL (2011). Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic //Xanthomonas// spp. J. Bacteriol. 193: 5450-64. DOI: [[https://doi.org/10.1128/JB.05262-11|10.1128/JB.05262-11]] Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV, Patil PB, Van Sluys MA, Ryan RP, Meyer DF, Han SW, Aparna G, Rajaram M, Delcher AL, Phillippy AM, Puiu D, Schatz MC, Shumway M, Sommer DD, Trapnell C, Benahmed F, Dimitrov G, Madupu R, Radune D, Sullivan S, Jha G, Ishihara H, Lee SW, Pandey A, Sharma V, Sriariyanun M, Szurek B, Vera-Cruz CM, Dorman KS, Ronald PC, Verdier V, Dow JM, Sonti RV, Tsuge S, Brendel VP, Rabinowicz PD, Leach JE, White FF, Salzberg SL (2011). Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic //Xanthomonas// spp. J. Bacteriol. 193: 5450-64. DOI: [[https://doi.org/10.1128/JB.05262-11|10.1128/JB.05262-11]]
 +
 +Cesbron S, Briand M, Essakhi S, Gironde S, Boureau T, Manceau C, Saux MF, Jacques MA (2015). Comparative genomics of pathogenic and nonpathogenic strains of //Xanthomonas arboricola// unveil molecular and evolutionary events linked to pathoadaptation. Front. Plant Sci. 6:1126. [[http://10.3389/fpls.2015.01126|http://10.3389/fpls.2015.01126]]
  
 Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL (2009). Identification of six type III effector genes with the PIP box in //Xanthomonas campestris// pv. //campestris// and five of them contribute individually to full pathogenicity. Mol. Plant Microbe Interact. 22: 1401-1411. DOI: [[https://doi.org/10.1094/MPMI-22-11-1401|10.1094/MPMI-22-11-1401]] Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL (2009). Identification of six type III effector genes with the PIP box in //Xanthomonas campestris// pv. //campestris// and five of them contribute individually to full pathogenicity. Mol. Plant Microbe Interact. 22: 1401-1411. DOI: [[https://doi.org/10.1094/MPMI-22-11-1401|10.1094/MPMI-22-11-1401]]
  
-Nissinen RM, Ytterberg AJ, Bogdanove AJ, VAN Wijk KJ, Beer SV (2007). Analyses of the secretomes of //Erwinia amylovora// and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. Mol. Plant Pathol. 8:55-67. DOI: [[https://doi.org/10.1111/j.1364-3703.2006.00370.x|10.1111/j.1364-3703.2006.00370.x]]+Nissinen RM, Ytterberg AJ, Bogdanove AJ, VAN Wijk KJ, Beer SV (2007). Analyses of the secretomes of //Erwinia amylovora// and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. Mol. Plant Pathol. 8: 55-67. DOI: [[https://doi.org/10.1111/j.1364-3703.2006.00370.x|10.1111/j.1364-3703.2006.00370.x]]
  
 Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S (2013). Repertoire, unified nomenclature and evolution of the Type III effector gene set in the //Ralstonia solanacearum// species complex. BMC Genomics 14: 859. DOI: [[https://doi.org/10.1186/1471-2164-14-859|10.1186/1471-2164-14-859]] Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S (2013). Repertoire, unified nomenclature and evolution of the Type III effector gene set in the //Ralstonia solanacearum// species complex. BMC Genomics 14: 859. DOI: [[https://doi.org/10.1186/1471-2164-14-859|10.1186/1471-2164-14-859]]
bacteria/t3e/xopal1.1593761996.txt.gz · Last modified: 2020/07/03 09:39 by rkoebnik