User Tools

Site Tools


bacteria:t3e:xopal1

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopal1 [2020/07/06 18:03]
joana_costa
bacteria:t3e:xopal1 [2020/08/11 14:34] (current)
rkoebnik [XopAL1]
Line 2: Line 2:
  
 Author: [[https://www.researchgate.net/profile/Matthieu_Arlat|Matthieu Arlat]]\\ Author: [[https://www.researchgate.net/profile/Matthieu_Arlat|Matthieu Arlat]]\\
-Internal reviewer: Joana Costa\\+Internal reviewer: [[https://www.researchgate.net/profile/Joana_Costa12|Joana Costa]]\\
 Expert reviewer: FIXME Expert reviewer: FIXME
  
Line 16: Line 16:
  
 XopAL was first identified in //X. campestris// pv. //campestris// (//Xcc//) strain 8004 as a candidate type III secreted (T3S)-effector due to the presence of a plant-inducible promoter (PIP) box in its gene, XC_2995 (Jiang //et al.//, 2009). XopAL was first identified in //X. campestris// pv. //campestris// (//Xcc//) strain 8004 as a candidate type III secreted (T3S)-effector due to the presence of a plant-inducible promoter (PIP) box in its gene, XC_2995 (Jiang //et al.//, 2009).
-=== (Experimental) evidence for being a type III secreted  effector (T3E) ===+=== (Experimental) evidence for being a type III secreted effector (T3E) ===
  
 Construction of a chimeric protein between the N-terminal region of XC_2995 (XopAL1) and a truncated AvrBS1 protein (AvrBS1<sub>59-445</sub>). The chimeric gene was introduced by conjugation into Xcc8004 ∆AvrBS1 mutant or derivative of this strain mutated in //hrpF// or //hpaB// genes. The transconjugants were tested for HR elicitation on pepper ECW-10R (Jiang //et al//., 2009). These experiments suggest that the N-terminal part of XopAL1 is able to allow the translocation of the chimeric protein into pepper cells in an Hrp-dependent manner. Construction of a chimeric protein between the N-terminal region of XC_2995 (XopAL1) and a truncated AvrBS1 protein (AvrBS1<sub>59-445</sub>). The chimeric gene was introduced by conjugation into Xcc8004 ∆AvrBS1 mutant or derivative of this strain mutated in //hrpF// or //hpaB// genes. The transconjugants were tested for HR elicitation on pepper ECW-10R (Jiang //et al//., 2009). These experiments suggest that the N-terminal part of XopAL1 is able to allow the translocation of the chimeric protein into pepper cells in an Hrp-dependent manner.
Line 55: Line 55:
 Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL (2009). Identification of six type III effector genes with the PIP box in //Xanthomonas campestris// pv. //campestris// and five of them contribute individually to full pathogenicity. Mol. Plant Microbe Interact. 22: 1401-1411. DOI: [[https://doi.org/10.1094/MPMI-22-11-1401|10.1094/MPMI-22-11-1401]] Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL (2009). Identification of six type III effector genes with the PIP box in //Xanthomonas campestris// pv. //campestris// and five of them contribute individually to full pathogenicity. Mol. Plant Microbe Interact. 22: 1401-1411. DOI: [[https://doi.org/10.1094/MPMI-22-11-1401|10.1094/MPMI-22-11-1401]]
  
-Nissinen RM, Ytterberg AJ, Bogdanove AJ, VAN Wijk KJ, Beer SV (2007). Analyses of the secretomes of //Erwinia amylovora// and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. Mol. Plant Pathol. 8:55-67. DOI: [[https://doi.org/10.1111/j.1364-3703.2006.00370.x|10.1111/j.1364-3703.2006.00370.x]]+Nissinen RM, Ytterberg AJ, Bogdanove AJ, VAN Wijk KJ, Beer SV (2007). Analyses of the secretomes of //Erwinia amylovora// and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. Mol. Plant Pathol. 8: 55-67. DOI: [[https://doi.org/10.1111/j.1364-3703.2006.00370.x|10.1111/j.1364-3703.2006.00370.x]]
  
 Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S (2013). Repertoire, unified nomenclature and evolution of the Type III effector gene set in the //Ralstonia solanacearum// species complex. BMC Genomics 14: 859. DOI: [[https://doi.org/10.1186/1471-2164-14-859|10.1186/1471-2164-14-859]] Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S (2013). Repertoire, unified nomenclature and evolution of the Type III effector gene set in the //Ralstonia solanacearum// species complex. BMC Genomics 14: 859. DOI: [[https://doi.org/10.1186/1471-2164-14-859|10.1186/1471-2164-14-859]]
bacteria/t3e/xopal1.1594051394.txt.gz · Last modified: 2020/07/06 18:03 by joana_costa