User Tools

Site Tools


Learn about COST & EuroXanth

Molecular Diagnosis and Diversity for Regulated Xanthomonas

Bacterial virulence factors

Plant resistance genes

List of contributors


Privacy policy

DokuWiki Syntax

This DokuWiki is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology)

Follow EuroXanth on Twitter, ResearchGate or!



Author: Matthieu Arlat
Internal reviewer: Ralf Koebnik
Expert reviewer: FIXME

Class: XopAL
Family: XopAL2
Prototype: XopAL2 (Xanthomonas campestris pv. campestris B100, gene Xb100_0616; Vorhölter et al., 2008)
RefSeq ID: CAP49952.1 (293 aa)
3D structure: Unknown

Biological function

How discovered?

Gene annotated in the genome of Xanthomonas campestris pv. campestris B100 (XccB100) (Vorhölter et al., 2008).

(Experimental) evidence for being a T3E

No experimental evidence. Identified in XccB100 genome and annotated as XopAL2, displays 29% identity and 43% similarity with XopAL1 at the amino acid sequence level.


Presence of a putative PIP box in the promoter region (Matthieu Arlat, personnal communication).


XopAL2 was found to be associated with variations in disease symptoms when testing a set of 45 X. campestris pv. campestris strains on two Arabidopsis natural accessions (Guy et al., 2013).



Enzymatic function


Interaction partners



In xanthomonads

Yes, X. campestris (Roux et al., 2015), X. citri

In other plant pathogens/symbionts

Ralstonia solanacearum (Rs_T3E_Hyp14; Peeters et al., 2013), Erwinia amylovora (Eop3; Nissinen et al., 2007, HopX1Ea; Bocsanczy et al., 2012), Pseudomonas spp.


Bocsanczy AM, Schneider DJ, DeClerck GA, Cartinhour S, Beer SV (2012). HopX1 in Erwinia amylovora functions as an avirulence protein in apple and is regulated by HrpL. J Bacteriol. 194: 553-560. DOI: 10.1128/JB.05065-11.

Guy E, Genissel A, Hajri A, Chabannes M, David P, Carrere S, Lautier M, Roux B, Boureau T, Arlat M, Poussier S, Noël LD (2013). Natural genetic variation of Xanthomonas campestris pv. campestris pathogenicity on Arabidopsis revealed by association and reverse genetics. mBio 4: e00538-12. DOI: 10.1128/mBio.00538-12. Erratum in: MBio (2013) 4: e00978-13.

Nissinen RM, Ytterberg AJ, Bogdanove AJ, Van Wijk KJ, Beer SV (2007). Analyses of the secretomes of Erwinia amylovora and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. Mol. Plant Pathol. 8: 55-67. DOI: 10.1111/j.1364-3703.2006.00370.x.

Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S (2013). Repertoire, unified nomenclature and evolution of the type III effector gene set in the Ralstonia solanacearum species complex. BMC Genomics 14: 859. DOI: 10.1186/1471-2164-14-859.

Roux B, Bolot S, Guy E, Denancé N, Lautier M, Jardinaud MF, Fischer-Le Saux M, Portier P, Jacques MA, Gagnevin L, Pruvost O, Lauber E, Arlat M, Carrère S, Koebnik R, Noël LD (2015). Genomics and transcriptomics of Xanthomonas campestris species challenge the concept of core type III effectome. BMC Genomics 16: 975. DOI: 10.1186/s12864-015-2190-0.

Vorhölter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Rückert C, Schmid J, Sidhu VK, Sieber V, Tauch A, Watt SA, Weisshaar B, Becker A, Niehaus K, Pühler A (2008). The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol. 134: 33-45. DOI:

bacteria/t3e/xopal2.txt · Last modified: 2020/08/09 18:04 by rkoebnik