User Tools

Site Tools


bacteria:t3e:xope2

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xope2 [2020/06/13 11:18]
bosis
bacteria:t3e:xope2 [2020/07/15 13:16] (current)
rkoebnik [Biological function]
Line 1: Line 1:
 ====== XopE2 ====== ====== XopE2 ======
  
-Author: Jaime Cubero\\ +Author: [[https://www.researchgate.net/profile/Jaime_Cubero|Jaime Cubero]]\\ 
-Internal reviewer: Eran Bosis\\+Internal reviewer: [[https://www.researchgate.net/profile/Eran_Bosis|Eran Bosis]]\\
 Expert reviewer: FIXME Expert reviewer: FIXME
  
-Class: XopE2\\ +Class: XopE\\ 
-Family: XopE\\ +Family: XopE2\\ 
-Prototype: XCV2280 (//Xanthomonas euvesicatoria// pv. //euvesicatoria// aka //Xanthomonas campestris// pv. //vescicatoria//; strain 85-10)\\+Prototype: XCV2280 (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\
 RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011347479.1|WP_011347479.1]] (358 aa)\\ RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011347479.1|WP_011347479.1]] (358 aa)\\
-3D structure: Myristoylation motif at their extreme N-terminus.+Synonym: AvrXacE3 (//Xanthomonas citri// pv. //citri//); AvrXccE1 (//Xanthomonas campestris// pv. //campestris//)\\ 
 +3D structure: Myristoylation motif at the extreme N terminus (Thieme //et al.//, 2007).
  
 ===== Biological function ===== ===== Biological function =====
Line 24: Line 25:
 === Phenotypes === === Phenotypes ===
  
-XopE2 shows an avirulence activity in //Solanum pseudocapsicum// (Thieme //et al.//, 2007) and //Agrobacterium// mediated transient expression of XopE2 shows avirulence activity in the ornamental plant //S. pseudocapsicum// (Lin //et al//., 2011). XopE2 proteins were shown to be capable of suppressing the hypersensitive response (HR) of //Nicotiana// spp. induced by HopPsyA of //P. syringae //pv. //syringae// 61 and the reaction occurs within the plant cells after their delivery by TTSS (Lin //et al//., 2011). XopE2 inhibits growth of yeast cells in the presence of sodium chloride and caffeine (Salomon //et al//., 2011), and expression of XopE2 in yeast affects the yeast cell wall and the endoplasmic reticulum stress response (Bosis //et al//., 2011). XopE2 appears to promote wall-bound invertase activity in pepprt leaves (Sonnewald //et al.//, 2011). XopE2 mutants grow to equivalent titers as wild type //X. euvesicatoria// in tomato leaves indicating that is not required for bacterial multiplication in planta. XopE2 together with XopE1 and XopO may function redundantly to inhibit //X//. //euvesicatoria// induced chlorosis in tomato leaves (Dubrow //et al//., 2018). XopE2 inhibits the activation of a PTI-inducible promoter by the bacterial peptide elf18 in //Arabidopsis //protoplasts and by flg22 in tomato protoplasts. This effector inhibits flg22-induced callose deposition in planta and enhanced disease symptoms caused by attenuated //Pseudomonas syringae// bacteria (Popov //et al//., 2016).+  * XopE2 shows an avirulence activity in //Solanum pseudocapsicum//  (Thieme //et al.//, 2007)
 +  * //Agrobacterium//  mediated transient expression of XopE2 shows avirulence activity in the ornamental plant //S. pseudocapsicum//  (Lin //et al//., 2011). 
 +  * XopE2 proteins were shown to be capable of suppressing the hypersensitive response (HR) of //Nicotiana//  spp. induced by HopPsyA of //P. syringae //pv. //syringae//  61 and the reaction occurs within the plant cells after their delivery by TTSS (Lin //et al//., 2011). 
 +  * XopE2 inhibits growth of yeast cells in the presence of sodium chloride and caffeine (Salomon //et al//., 2011)
 +  * Expression of XopE2 in yeast affects the yeast cell wall and the endoplasmic reticulum stress response (Bosis //et al//., 2011). 
 +  * XopE2 appears to promote wall-bound invertase activity in pepprt leaves (Sonnewald //et al.//, 2011). 
 +  * XopE2 mutants grow to equivalent titers as wild type //X. euvesicatoria//  in tomato leaves indicating that is not required for bacterial multiplication in planta. XopE2 together with XopE1 and XopO may function redundantly to inhibit //X//. //euvesicatoria//  induced chlorosis in tomato leaves (Dubrow //et al//., 2018). 
 +  * XopE2 inhibits the activation of a PTI-inducible promoter by the bacterial peptide elf18 in //Arabidopsis //protoplasts and by flg22 in tomato protoplasts. This effector inhibits flg22-induced callose deposition //in planta //and enhanced disease symptoms caused by attenuated //Pseudomonas syringae//  bacteria (Popov //et al//., 2016). 
 === Localization === === Localization ===
  
-XopE2 fused to gfp in a binary vector under control of the Cauliflower mosaic virus 35S promoter expressed in //Nicotiana benthamiana// leaves, using //Agrobacterium//-mediated gene transfer, allowed to localize XopE2::GFP confined to the periphery of the cells and not detectable in the nucleus or in the cytoplasm. Localization of the XopE2::GFP to the plasma membrane of //N. benthamiana //mesophyll cells could be confirmed by immunocytochemistry (Thieme //et al//., 2007).+XopE2 fused to GFP in a binary vector under control of the Cauliflower mosaic virus 35S promoter expressed in //Nicotiana benthamiana//  leaves, using //Agrobacterium//-mediated gene transfer, allowed to localize XopE2::GFP confined to the periphery of the cells and not detectable in the nucleus or in the cytoplasm. Localization of the XopE2::GFP to the plasma membrane of //N. benthamiana //mesophyll cells could be confirmed by immunocytochemistry (Thieme //et al//., 2007). 
 === Enzymatic function === === Enzymatic function ===
  
 XopE2 belongs to the HopX effector family, which are part of the transglutaminase superfamily (Nimchuk //et al//., 2007). XopE2 belongs to the HopX effector family, which are part of the transglutaminase superfamily (Nimchuk //et al//., 2007).
 +
 === Interaction partners === === Interaction partners ===
  
 XopE2 was found to physically interact with tomato 14-3-3 (TFT) proteins. XopE2 is phosphorylated at multiple residues //in planta //for maximal binding to TFT10 (Dubrow //et al//., 2018). XopE2 was found to physically interact with tomato 14-3-3 (TFT) proteins. XopE2 is phosphorylated at multiple residues //in planta //for maximal binding to TFT10 (Dubrow //et al//., 2018).
 +
 ===== Conservation ===== ===== Conservation =====
  
Line 44: Line 56:
 ===== References ===== ===== References =====
  
-Assis RAB, Polloni LC, Patané JSL, Thakur S, Felestrino ÉB, Diaz-Caballero J, Digiampietri LA, Goulart LR, Almeida NF, Nascimento R, Dandekar AM, Zaini PA, Setubal JC, Guttman DS, Moreira LM (2017). Identification and analysis of seven effector protein families with different adaptive and evolutionary histories in plant-associated members of the Xanthomonadaceae. Sci. Rep. 7:16133. DOI: [[https://doi.org/10.1038/s41598-017-16325-1|10.1038/s41598-017-16325-1]].+Assis RAB, Polloni LC, Patané JSL, Thakur S, Felestrino ÉB, Diaz-Caballero J, Digiampietri LA, Goulart LR, Almeida NF, Nascimento R, Dandekar AM, Zaini PA, Setubal JC, Guttman DS, Moreira LM (2017). Identification and analysis of seven effector protein families with different adaptive and evolutionary histories in plant-associated members of the //Xanthomonadaceae//. Sci. Rep. 7: 16133. DOI: [[https://doi.org/10.1038/s41598-017-16325-1|10.1038/s41598-017-16325-1]] 
 + 
 +Bosis E, Salomon D, Sessa G (2011)A simple yeast-based strategy to identify host cellular processes targeted by bacterial effector proteins. PLoS One 6: e27698. DOI: [[https://dx.doi.org/10.1371/journal.pone.0027698|10.1371/journal.pone.0027698]] 
 + 
 +da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira, MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA,Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos SM, Truffi D, Tsai, SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two //Xanthomonas// pathogens with differing host specificities. Nature 417: 459-463. DOI: [[https://doi.org/10.1038/417459a|10.1038/417459a]]
  
-Bosis ESalomon D, Sessa G. A simple yeast-based strategy to identify host cellular processes targeted by bacterial effector proteins. PLoS One2011;6(11). DOI: [[https://dx.doi.org/10.1371/journal.pone.0027698|10.1371/journal.pone.0027698]].+Dubrow ZSunitha S, Kim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YC, Ozbaki-Yagan N, Vance H, Sessa G, Mudgett MB (2018)Tomato 14-3-3 proteins are required for //Xv3// disease resistance and interact with a subset of //Xanthomonas euvesicatoria// effectorsMolPlant Microbe Interact. 31: 1301-1311. DOI: [[https://doi.org/10.1094/MPMI-02-18-0048-R|10.1094/MPMI-02-18-0048-R]]
  
-da Silva ACFerro JAReinach FCFarah CSFurlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira, MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA,Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos SM, Truffi D, Tsai, SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two //Xanthomonas// pathogens with differing host specificitiesNature 417(6887):459–463DOI: [[https://doi.org/10.1038/417459a|10.1038/417459a]].+Lin RHPeng CWLin YCPeng HLHuang HC (2011). The XopE2 effector protein of //Xanthomonas campestris// pvvesicatoria is involved in virulence and in the suppression of the hypersensitive response. Bot. Stud. 5255-72. [[https://www.researchgate.net/publication/286363598_The_XopE2_effector_protein_of_Xanthomonas_campestris_pv_vesicatoria_is_involved_in_virulence_and_in_the_suppression_of_the_hypersensitive_response|Link]]
  
-Dubrow ZSunitha SKim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YCOzbaki-Yagan N, Vance H, Sessa G, Mudgett MB (2018). Tomato 14-3-3 proteins are required for Xv3 disease resistance and interact with a subset of //Xanthomonas euvesicatoria// effectors. Mol Plant Microbe Interact. 31(12):1301-1311. DOI: [[https://doi.org/10.1094/MPMI-02-18-0048-R|10.1094/MPMI-02-18-0048-R]].+Nimchuk ZLFisher EJDesvaux D, Chang JHDangl JL (2007). The HopX (AvrPphE) family of //Pseudomonas syringae// type III effectors require a catalytic triad and a novel N-terminal domain forfunction. MolPlant Microbe Interact. 20346-357. DOI: [[https://doi.org/10.1094/MPMI-20-4-0346|10.1094/MPMI-20-4-0346]]
  
-Lin RHPeng CWLin YCPeng HL, Huang HC (2011). The xopE2 effector protein of //Xanthomonas campestris// pvvesicatoria is involved in virulence and in the suppression of the hypersensitive responseBotStud. 52(1):55-72. [[http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=60228561&site=ehost-live|Link]]+Popov GFraiture MBrunner FSessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunityMolPlant Microbe Interact29651-660DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]
  
-Nimchuk ZL, Fisher EJDesvaux D, Chang JHDangl JL (2007). The HopX (AvrPphE) family of //Pseudomonas syringae// type III effectors require a catalytic triad and a novel N-terminal domain forfunction. Mol. Plant-Microbe Interact. 20(4):346-357. DOI: [[https://doi.org/10.1094/MPMI-20-4-0346|10.1094/MPMI-20-4-0346]].+Salomon DDar D, Sreeramulu SSessa G (2011). Expression of //Xanthomonas campestris// pv. vesicatoria type III effectors in yeast affects cell growth and viability. Mol. Plant Microbe Interact. 24305-314. DOI: [[https://doi.org/10.1094/MPMI-09-10-0196|0.1094/MPMI-09-10-0196]]
  
-Popov GFraiture MBrunner FSessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunityMol. Plant Microbe Interact. 29(8):651–660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]].+Sonnewald SPriller JPSchuster JGlickmann E, Hajirezaei MR, Siebig S, Mudgett MB, Sonnewald U (2012). Regulation of cell wall-bound invertase in pepper leaves by //Xanthomonas campestris// pv. //vesicatoria// type three effectors. PLoS One 7e51763. DOI: [[https://dx.doi.org/10.1371/journal.pone.0051763|10.1371/journal.pone.0051763]]
  
-Salomon DDar D, Sreeramulu S, Sessa G (2011). Expression of //Xanthomonas campestris// pv. vesicatoria type III effectors in yeast affects cell growth and viabilityMol Plant Microbe In24 (3):305–314. DOI: [[https://doi.org/0.1094/MPMI-09-10-0196|0.1094/MPMI-09-10-0196]].+Thieme FKoebnik R, Bekel T, Berger C, Boch J, Büttner D, Caldana C, Gaigalat L, Goesmann A, Kay S, Kirchner O, Lanz C, Linke B, McHardy AC, Meyer F, Mittenhuber G, Nies DH, Niesbach-Klösgen U, Patschkowski T, Rückert C, Rupp O, Schneiker S, Schuster SC, Vorhölter F, Weber E, Pühler A, Bonas U, Bartels D, Kaiser O (2005). Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium //Xanthomonas campestris// pv. vesicatoria revealed by the complete genome sequenceJBacteriol. 1877254-7266. DOI: [[https://doi.org/10.1128/JB.187.21.7254-7266.2005|10.1128/JB.187.21.7254-7266.2005]]
  
-Sonnewald SPriller JPSchuster JGlickmann EHajirezaei MRSiebig S, Mudgett MB, Sonnewald U. Regulation of cell wall-bound invertase in pepper leaves by Xanthomonas campestris pv. vesicatoria type three effectorsPLoS One2012;7(12). DOI: [[https://dx.doi.org/10.1371/journal.pone.0051763|10.1371/journal.pone.0051763]].+Thieme FSzczesny RUrban AKirchner OHause GBonas (2007)New type III effectors from //Xanthomonas campestris// pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motifMol Plant Microbe Interact20: 1250-1261. DOI: [[https://doi.org/10.1094/MPMI-20-10-1250|10.1094/MPMI-20-10-1250]]
  
-Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Büttner D, Caldana C, Gaigalat L, Goesmann A, Kay S, Kirchner O, Lanz C, Linke B, McHardy AC, Meyer F, Mittenhuber G, Nies DH, Niesbach-Klösgen U, Patschkowski T, Rückert C, Rupp O, Schneiker S, Schuster SC, Vorhölter F, Weber E, Pühler A, Bonas U, Bartels D, Kaiser O (2005). Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium //Xanthomonas campestris// pv. vesicatoria revealed by the complete genome sequence. J. Bacteriol. 187 (21) :7254-7266. DOI: [[https://doi.org/10.1128/JB.187.21.7254-7266.2005|10.1128/JB.187.21.7254-7266.2005]].+===== Further reading =====
  
-Thieme FSzczesny RUrban AKirchner OHause GBonas U (2007). New type III effectors from //Xanthomonas campestris// pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motifMol Plant Microbe In20(10):1250–61. DOI: [[https://doi.org/10.1094/MPMI-20-10-1250|10.1094/MPMI-20-10-1250]].+He YQZhang LJiang BLZhang ZCXu RQTang DJ, Qin J, Jiang W, Zhang X, Liao J, Cao JR, Zhang SS, Wei ML, Liang XX, Lu GT, Feng JX, Chen B, Cheng J, Tang JL (2007). Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen //Xanthomonas campestris// pv. //campestris//Genome Biol8R218. DOI: [[https://doi.org/10.1186/gb-2007-8-10-r218|10.1186/gb-2007-8-10-r218]]
  
bacteria/t3e/xope2.1592039903.txt.gz · Last modified: 2020/06/13 11:18 by bosis