User Tools

Site Tools


bacteria:t3e:xope2

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xope2 [2020/06/30 18:33]
rkoebnik [XopE2]
bacteria:t3e:xope2 [2020/07/15 13:16] (current)
rkoebnik [Biological function]
Line 1: Line 1:
 ====== XopE2 ====== ====== XopE2 ======
  
-Author: Jaime Cubero\\ +Author: [[https://www.researchgate.net/profile/Jaime_Cubero|Jaime Cubero]]\\ 
-Internal reviewer: Eran Bosis\\+Internal reviewer: [[https://www.researchgate.net/profile/Eran_Bosis|Eran Bosis]]\\
 Expert reviewer: FIXME Expert reviewer: FIXME
  
 Class: XopE\\ Class: XopE\\
 Family: XopE2\\ Family: XopE2\\
-Prototype: XCV2280 (//Xanthomonas euvesicatoria// pv. //euvesicatoria// aka //Xanthomonas campestris// pv. //vescicatoria//; strain 85-10)\\+Prototype: XCV2280 (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\
 RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011347479.1|WP_011347479.1]] (358 aa)\\ RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011347479.1|WP_011347479.1]] (358 aa)\\
-3D structure: Myristoylation motif at their extreme N-terminus.+Synonym: AvrXacE3 (//Xanthomonas citri// pv. //citri//); AvrXccE1 (//Xanthomonas campestris// pv. //campestris//)\\ 
 +3D structure: Myristoylation motif at the extreme N terminus (Thieme //et al.//, 2007).
  
 ===== Biological function ===== ===== Biological function =====
Line 24: Line 25:
 === Phenotypes === === Phenotypes ===
  
-XopE2 shows an avirulence activity in //Solanum pseudocapsicum// (Thieme //et al.//, 2007) and //Agrobacterium// mediated transient expression of XopE2 shows avirulence activity in the ornamental plant //S. pseudocapsicum// (Lin //et al//., 2011). XopE2 proteins were shown to be capable of suppressing the hypersensitive response (HR) of //Nicotiana// spp. induced by HopPsyA of //P. syringae //pv. //syringae// 61 and the reaction occurs within the plant cells after their delivery by TTSS (Lin //et al//., 2011). XopE2 inhibits growth of yeast cells in the presence of sodium chloride and caffeine (Salomon //et al//., 2011), and expression of XopE2 in yeast affects the yeast cell wall and the endoplasmic reticulum stress response (Bosis //et al//., 2011). XopE2 appears to promote wall-bound invertase activity in pepprt leaves (Sonnewald //et al.//, 2011). XopE2 mutants grow to equivalent titers as wild type //X. euvesicatoria// in tomato leaves indicating that is not required for bacterial multiplication in planta. XopE2 together with XopE1 and XopO may function redundantly to inhibit //X//. //euvesicatoria// induced chlorosis in tomato leaves (Dubrow //et al//., 2018). XopE2 inhibits the activation of a PTI-inducible promoter by the bacterial peptide elf18 in //Arabidopsis //protoplasts and by flg22 in tomato protoplasts. This effector inhibits flg22-induced callose deposition in planta and enhanced disease symptoms caused by attenuated //Pseudomonas syringae// bacteria (Popov //et al//., 2016).+  * XopE2 shows an avirulence activity in //Solanum pseudocapsicum//  (Thieme //et al.//, 2007)
 +  * //Agrobacterium//  mediated transient expression of XopE2 shows avirulence activity in the ornamental plant //S. pseudocapsicum//  (Lin //et al//., 2011). 
 +  * XopE2 proteins were shown to be capable of suppressing the hypersensitive response (HR) of //Nicotiana//  spp. induced by HopPsyA of //P. syringae //pv. //syringae//  61 and the reaction occurs within the plant cells after their delivery by TTSS (Lin //et al//., 2011). 
 +  * XopE2 inhibits growth of yeast cells in the presence of sodium chloride and caffeine (Salomon //et al//., 2011)
 +  * Expression of XopE2 in yeast affects the yeast cell wall and the endoplasmic reticulum stress response (Bosis //et al//., 2011). 
 +  * XopE2 appears to promote wall-bound invertase activity in pepprt leaves (Sonnewald //et al.//, 2011). 
 +  * XopE2 mutants grow to equivalent titers as wild type //X. euvesicatoria//  in tomato leaves indicating that is not required for bacterial multiplication in planta. XopE2 together with XopE1 and XopO may function redundantly to inhibit //X//. //euvesicatoria//  induced chlorosis in tomato leaves (Dubrow //et al//., 2018). 
 +  * XopE2 inhibits the activation of a PTI-inducible promoter by the bacterial peptide elf18 in //Arabidopsis //protoplasts and by flg22 in tomato protoplasts. This effector inhibits flg22-induced callose deposition //in planta //and enhanced disease symptoms caused by attenuated //Pseudomonas syringae//  bacteria (Popov //et al//., 2016). 
 === Localization === === Localization ===
  
-XopE2 fused to gfp in a binary vector under control of the Cauliflower mosaic virus 35S promoter expressed in //Nicotiana benthamiana// leaves, using //Agrobacterium//-mediated gene transfer, allowed to localize XopE2::GFP confined to the periphery of the cells and not detectable in the nucleus or in the cytoplasm. Localization of the XopE2::GFP to the plasma membrane of //N. benthamiana //mesophyll cells could be confirmed by immunocytochemistry (Thieme //et al//., 2007).+XopE2 fused to GFP in a binary vector under control of the Cauliflower mosaic virus 35S promoter expressed in //Nicotiana benthamiana//  leaves, using //Agrobacterium//-mediated gene transfer, allowed to localize XopE2::GFP confined to the periphery of the cells and not detectable in the nucleus or in the cytoplasm. Localization of the XopE2::GFP to the plasma membrane of //N. benthamiana //mesophyll cells could be confirmed by immunocytochemistry (Thieme //et al//., 2007). 
 === Enzymatic function === === Enzymatic function ===
  
 XopE2 belongs to the HopX effector family, which are part of the transglutaminase superfamily (Nimchuk //et al//., 2007). XopE2 belongs to the HopX effector family, which are part of the transglutaminase superfamily (Nimchuk //et al//., 2007).
 +
 === Interaction partners === === Interaction partners ===
  
 XopE2 was found to physically interact with tomato 14-3-3 (TFT) proteins. XopE2 is phosphorylated at multiple residues //in planta //for maximal binding to TFT10 (Dubrow //et al//., 2018). XopE2 was found to physically interact with tomato 14-3-3 (TFT) proteins. XopE2 is phosphorylated at multiple residues //in planta //for maximal binding to TFT10 (Dubrow //et al//., 2018).
 +
 ===== Conservation ===== ===== Conservation =====
  
Line 65: Line 77:
  
 Thieme F, Szczesny R, Urban A, Kirchner O, Hause G, Bonas U (2007). New type III effectors from //Xanthomonas campestris// pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif. Mol Plant Microbe Interact. 20: 1250-1261. DOI: [[https://doi.org/10.1094/MPMI-20-10-1250|10.1094/MPMI-20-10-1250]] Thieme F, Szczesny R, Urban A, Kirchner O, Hause G, Bonas U (2007). New type III effectors from //Xanthomonas campestris// pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif. Mol Plant Microbe Interact. 20: 1250-1261. DOI: [[https://doi.org/10.1094/MPMI-20-10-1250|10.1094/MPMI-20-10-1250]]
 +
 +===== Further reading =====
 +
 +He YQ, Zhang L, Jiang BL, Zhang ZC, Xu RQ, Tang DJ, Qin J, Jiang W, Zhang X, Liao J, Cao JR, Zhang SS, Wei ML, Liang XX, Lu GT, Feng JX, Chen B, Cheng J, Tang JL (2007). Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen //Xanthomonas campestris// pv. //campestris//. Genome Biol. 8: R218. DOI: [[https://doi.org/10.1186/gb-2007-8-10-r218|10.1186/gb-2007-8-10-r218]]
  
bacteria/t3e/xope2.1593534793.txt.gz · Last modified: 2020/06/30 18:33 by rkoebnik