User Tools

Site Tools


bacteria:t3e:xope4

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
bacteria:t3e:xope4 [2020/04/21 23:11]
127.0.0.1 external edit
bacteria:t3e:xope4 [2020/11/26 16:37] (current)
rkoebnik [XopE4]
Line 1: Line 1:
 ====== XopE4 ====== ====== XopE4 ======
  
-Author: Jaime Cubero\\ +Author: [[https://www.researchgate.net/profile/Jaime_Cubero|Jaime Cubero]]\\ 
-Internal reviewer: FIXME\\ +Internal reviewer: [[https://www.researchgate.net/profile/Eran_Bosis|Eran Bosis]]\\ 
-Expert reviewer: FIXME+Expert reviewer: [[https://www.researchgate.net/profile/Adriana_Bernal|Adriana Bernal]]
  
-Class: XopE4\\ +Class: XopE\\ 
-Family: XopE\\ +Family: XopE4\\ 
-Prototype: XAUC_31730 (//X. fuscans pv. aurantifolii//)\\ +Prototype: XAUC_31730 (//Xanthomonas fuscans// pv. //aurantifolii//)\\ 
-RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/AAM38068.1|AAM38068.1]] (356 aa)\\ +Protein Accession ID: [[https://www.ncbi.nlm.nih.gov/protein/EFF46466.1|EFF46466.1]] (388 aa)\\ 
-3D structure: no myristoylation site.+3D structure: unknown
  
 ===== Biological function ===== ===== Biological function =====
  
 === How discovered? === === How discovered? ===
-XopE4 was first identified by sequence homology searches (Moreira //et al//., 2010). 
  
 +XopE4 was first identified by sequence homology searches (Moreira //et al//., 2010).
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
 +
 Homology to other XopE effectors. Homology to other XopE effectors.
  
 === Regulation === === Regulation ===
 +
 Unknown. Unknown.
  
 === Phenotypes === === Phenotypes ===
-The gene sequence of xopE4 is similar to avrXopE3, but due to its low amino acid sequence identity (31%) was considered a different effector that can discriminate between X. citri and //X. fuscans// pv. aurantifolii strains, both causing citrus bacterial canker (Moreira //et al//., 2010; Dalio //et al//., 2017). Disease symptoms caused //Xanthomonas axonopodis// pv. manihotis mutant strains on //xopE4// are similar to those caused by the wild-type strain. Moreover, using heterologous systems XopE4 was demonstrated unable to suppress (PAMP)-triggered immunity (PTI) but showed the ability to suppress effector-triggered immunity (ETI) (Medina //et al//., 2018). 
  
 +The gene sequence of xopE4 is similar to XopE2 (avrXacE3), but due to its low amino acid sequence identity (31%) was considered a different effector that can discriminate between X. citri and //X. fuscans// pv. aurantifolii strains, both causing citrus bacterial canker (Moreira //et al//., 2010; Dalio //et al//., 2017). Disease symptoms caused by //Xanthomonas axonopodis// pv. //manihotis// mutant strains deleted for //xopE4// are similar to those caused by the wild-type strain. Moreover, using heterologous systems XopE4 was unable to suppress (PAMP)-triggered immunity (PTI) but showed weak ability to suppress effector-triggered immunity (ETI) (Medina //et al//., 2018).
 === Localization === === Localization ===
-As XopE4 does not have a predicted myristoylation site, suggesting that it may not be targeted to the cell membrane as the other XopE family member (Moreira //et al//., 2010). 
  
 +As XopE4 does not have a predicted myristoylation site, suggesting that it may not be targeted to the cell membrane as the other XopE family member (Moreira //et al//., 2010).
 === Enzymatic function === === Enzymatic function ===
-XopE4 belongs to the HopX effector family, which are part of the transglutaminase superfamily (Nichmuk //et al//., 2007). 
  
 +XopE4 belongs to the HopX effector family, which are part of the transglutaminase superfamily (Nichmuk //et al//., 2007).
 === Interaction partners === === Interaction partners ===
 +
 Not known. Not known.
  
Line 37: Line 40:
  
 === In xanthomonads === === In xanthomonads ===
-Yes (//e.g.//, //X. axonopodis//).\\ 
  
 +Yes (//e.g.//, //X. axonopodis//).
 +
 +XopE4 is also present in //X. fragariae // (Vandroemme// et al//., 2013) and it is not very conserved among //X. perforans// strains (Schwartz //et al//., 2015).
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
-Not known.+ 
 +Unknown.
  
 ===== References ===== ===== References =====
  
-Dalio RJD, Magalhães DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RR, Picchi SC, Martins PMM, Santos PJC, Maximo HJ, Pacheco IS, De Souza AA, Machado MA (2017). PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. Ann Bot. 119(5):749-774. DOI: [[https://doi.org/10.1093/aob/mcw238|10.1093/aob/mcw238]].+Dalio RJD, Magalhães DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RR, Picchi SC, Martins PMM, Santos PJC, Maximo HJ, Pacheco IS, De Souza AA, Machado MA (2017). PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. AnnBot. 119: 749-774. DOI: [[https://doi.org/10.1093/aob/mcw238|10.1093/aob/mcw238]].
  
-Medina CA, Reyes PA, Trujillo CA, Gonzalez JL, Bejarano DA, Montenegro NA, Jacobs JM, Joe A, Restrepo S, Alfano JR, Bernal A (2018). The role of type III effectors from //Xanthomonas axonopodis// pv. manihotis in virulence and suppression of plant immunity. Mol Plant Pathol. 19(3):593-606. DOI: [[https://doi.org/10.1111/mpp.12545|10.1111/mpp.12545]].+Medina CA, Reyes PA, Trujillo CA, Gonzalez JL, Bejarano DA, Montenegro NA, Jacobs JM, Joe A, Restrepo S, Alfano JR, Bernal A (2018). The role of type III effectors from //Xanthomonas axonopodis// pv. manihotis in virulence and suppression of plant immunity. MolPlant Pathol. 19: 593-606. DOI: [[https://doi.org/10.1111/mpp.12545|10.1111/mpp.12545]].
  
 Moreira LM, Almeida NF Jr, Potnis N, Digiampietri LA, Adi SS, Bortolossi JC, da Silva AC, da Silva AM, de Moraes FE, de Oliveira JC, de Souza RF, Facincani AP, Ferraz AL, Ferro MI, Furlan LR, Gimenez DF, Jones JB, Kitajima EW, Laia ML, Leite RP Jr, Nishiyama MY, Rodrigues Neto J, Nociti LA, Norman DJ, Ostroski EH, Pereira HA Jr, Staskawicz BJ, Tezza RI, Ferro JA, Vinatzer BA, Setubal JC. (2010). Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of //Xanthomonas fuscans// subsp. aurantifolii. BMC Genomics 11: 238. DOI: [[https://doi.org/10.1186/1471-2164-11-238|10.1186/1471-2164-11-238]]. Moreira LM, Almeida NF Jr, Potnis N, Digiampietri LA, Adi SS, Bortolossi JC, da Silva AC, da Silva AM, de Moraes FE, de Oliveira JC, de Souza RF, Facincani AP, Ferraz AL, Ferro MI, Furlan LR, Gimenez DF, Jones JB, Kitajima EW, Laia ML, Leite RP Jr, Nishiyama MY, Rodrigues Neto J, Nociti LA, Norman DJ, Ostroski EH, Pereira HA Jr, Staskawicz BJ, Tezza RI, Ferro JA, Vinatzer BA, Setubal JC. (2010). Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of //Xanthomonas fuscans// subsp. aurantifolii. BMC Genomics 11: 238. DOI: [[https://doi.org/10.1186/1471-2164-11-238|10.1186/1471-2164-11-238]].
  
-Nimchuk ZL, Fisher EJ, Desvaux D, Chang JH, Dangl JL (2007). The HopX (AvrPphE) family of //Pseudomonas syringae// type III effectors require a catalytic triad and a novel N-terminal domain forfunction. Mol. Plant-Microbe Interact. 20(4):346-357. DOI: [[https://doi.org/10.1094/MPMI-20-4-0346|10.1094/MPMI-20-4-0346]].+Nimchuk ZL, Fisher EJ, Desvaux D, Chang JH, Dangl JL (2007). The HopX (AvrPphE) family of //Pseudomonas syringae// type III effectors require a catalytic triad and a novel N-terminal domain forfunction. Mol. Plant Microbe Interact. 20: 346-357. DOI: [[https://doi.org/10.1094/MPMI-20-4-0346|10.1094/MPMI-20-4-0346]]. 
 + 
 +Schwartz, A. R., Potnis, N., Timilsina, S., Wilson, M., Patané, J., Martins Jr, J., & Vallad, G. E. (2015). Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Frontiers in Microbiology, 6, 535. DOI: [[https://doi.org/10.3389/fmicb.2015.00535|10.3389/fmicb.2015.00535]] 
 + 
 +Vandroemme, J., Cottyn, B., Baeyen, S., De Vos, P., & Maes, M. (2013). Draft genome sequence of //Xanthomonas fragariae// reveals reductive evolution and distinct virulence-related gene content. BMC genomics, //14// (1), 829. DOI: [[https://doi.org/10.1186/1471-2164-14-829|10.1186/1471-2164-14-829 ]]
  
bacteria/t3e/xope4.1587503460.txt.gz · Last modified: 2020/04/21 23:11 by 127.0.0.1