User Tools

Site Tools


bacteria:t3e:xope4

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xope4 [2020/06/13 13:19]
bosis
bacteria:t3e:xope4 [2020/11/26 16:37] (current)
rkoebnik [XopE4]
Line 1: Line 1:
 ====== XopE4 ====== ====== XopE4 ======
  
-Author: Jaime Cubero\\ +Author: [[https://www.researchgate.net/profile/Jaime_Cubero|Jaime Cubero]]\\ 
-Internal reviewer: Eran Bosis\\ +Internal reviewer: [[https://www.researchgate.net/profile/Eran_Bosis|Eran Bosis]]\\ 
-Expert reviewer: FIXME+Expert reviewer: [[https://www.researchgate.net/profile/Adriana_Bernal|Adriana Bernal]]
  
-Class: XopE4\\ +Class: XopE\\ 
-Family: XopE\\ +Family: XopE4\\ 
-Prototype: XAUC_31730 (//X. fuscans pv. aurantifolii//)\\+Prototype: XAUC_31730 (//Xanthomonas fuscans// pv. //aurantifolii//)\\
 Protein Accession ID: [[https://www.ncbi.nlm.nih.gov/protein/EFF46466.1|EFF46466.1]] (388 aa)\\ Protein Accession ID: [[https://www.ncbi.nlm.nih.gov/protein/EFF46466.1|EFF46466.1]] (388 aa)\\
-3D structure: unknown.+3D structure: unknown
  
 ===== Biological function ===== ===== Biological function =====
Line 42: Line 42:
  
 Yes (//e.g.//, //X. axonopodis//). Yes (//e.g.//, //X. axonopodis//).
 +
 +XopE4 is also present in //X. fragariae // (Vandroemme// et al//., 2013) and it is not very conserved among //X. perforans// strains (Schwartz //et al//., 2015).
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
Line 48: Line 50:
 ===== References ===== ===== References =====
  
-Dalio RJD, Magalhães DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RR, Picchi SC, Martins PMM, Santos PJC, Maximo HJ, Pacheco IS, De Souza AA, Machado MA (2017). PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. Ann Bot. 119(5):749-774. DOI: [[https://doi.org/10.1093/aob/mcw238|10.1093/aob/mcw238]].+Dalio RJD, Magalhães DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RR, Picchi SC, Martins PMM, Santos PJC, Maximo HJ, Pacheco IS, De Souza AA, Machado MA (2017). PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. AnnBot. 119: 749-774. DOI: [[https://doi.org/10.1093/aob/mcw238|10.1093/aob/mcw238]].
  
-Medina CA, Reyes PA, Trujillo CA, Gonzalez JL, Bejarano DA, Montenegro NA, Jacobs JM, Joe A, Restrepo S, Alfano JR, Bernal A (2018). The role of type III effectors from //Xanthomonas axonopodis// pv. manihotis in virulence and suppression of plant immunity. Mol Plant Pathol. 19(3):593-606. DOI: [[https://doi.org/10.1111/mpp.12545|10.1111/mpp.12545]].+Medina CA, Reyes PA, Trujillo CA, Gonzalez JL, Bejarano DA, Montenegro NA, Jacobs JM, Joe A, Restrepo S, Alfano JR, Bernal A (2018). The role of type III effectors from //Xanthomonas axonopodis// pv. manihotis in virulence and suppression of plant immunity. MolPlant Pathol. 19: 593-606. DOI: [[https://doi.org/10.1111/mpp.12545|10.1111/mpp.12545]].
  
 Moreira LM, Almeida NF Jr, Potnis N, Digiampietri LA, Adi SS, Bortolossi JC, da Silva AC, da Silva AM, de Moraes FE, de Oliveira JC, de Souza RF, Facincani AP, Ferraz AL, Ferro MI, Furlan LR, Gimenez DF, Jones JB, Kitajima EW, Laia ML, Leite RP Jr, Nishiyama MY, Rodrigues Neto J, Nociti LA, Norman DJ, Ostroski EH, Pereira HA Jr, Staskawicz BJ, Tezza RI, Ferro JA, Vinatzer BA, Setubal JC. (2010). Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of //Xanthomonas fuscans// subsp. aurantifolii. BMC Genomics 11: 238. DOI: [[https://doi.org/10.1186/1471-2164-11-238|10.1186/1471-2164-11-238]]. Moreira LM, Almeida NF Jr, Potnis N, Digiampietri LA, Adi SS, Bortolossi JC, da Silva AC, da Silva AM, de Moraes FE, de Oliveira JC, de Souza RF, Facincani AP, Ferraz AL, Ferro MI, Furlan LR, Gimenez DF, Jones JB, Kitajima EW, Laia ML, Leite RP Jr, Nishiyama MY, Rodrigues Neto J, Nociti LA, Norman DJ, Ostroski EH, Pereira HA Jr, Staskawicz BJ, Tezza RI, Ferro JA, Vinatzer BA, Setubal JC. (2010). Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of //Xanthomonas fuscans// subsp. aurantifolii. BMC Genomics 11: 238. DOI: [[https://doi.org/10.1186/1471-2164-11-238|10.1186/1471-2164-11-238]].
  
-Nimchuk ZL, Fisher EJ, Desvaux D, Chang JH, Dangl JL (2007). The HopX (AvrPphE) family of //Pseudomonas syringae// type III effectors require a catalytic triad and a novel N-terminal domain forfunction. Mol. Plant-Microbe Interact. 20(4):346-357. DOI: [[https://doi.org/10.1094/MPMI-20-4-0346|10.1094/MPMI-20-4-0346]].+Nimchuk ZL, Fisher EJ, Desvaux D, Chang JH, Dangl JL (2007). The HopX (AvrPphE) family of //Pseudomonas syringae// type III effectors require a catalytic triad and a novel N-terminal domain forfunction. Mol. Plant Microbe Interact. 20: 346-357. DOI: [[https://doi.org/10.1094/MPMI-20-4-0346|10.1094/MPMI-20-4-0346]]. 
 + 
 +Schwartz, A. R., Potnis, N., Timilsina, S., Wilson, M., Patané, J., Martins Jr, J., & Vallad, G. E. (2015). Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Frontiers in Microbiology, 6, 535. DOI: [[https://doi.org/10.3389/fmicb.2015.00535|10.3389/fmicb.2015.00535]] 
 + 
 +Vandroemme, J., Cottyn, B., Baeyen, S., De Vos, P., & Maes, M. (2013). Draft genome sequence of //Xanthomonas fragariae// reveals reductive evolution and distinct virulence-related gene content. BMC genomics, //14// (1), 829. DOI: [[https://doi.org/10.1186/1471-2164-14-829|10.1186/1471-2164-14-829 ]]
  
bacteria/t3e/xope4.1592047160.txt.gz · Last modified: 2020/06/13 13:19 by bosis