User Tools

Site Tools


bacteria:t3e:xopj4

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopj4 [2020/07/09 16:45]
rkoebnik [XopJ4]
bacteria:t3e:xopj4 [2020/07/20 10:44] (current)
jfpothier
Line 20: Line 20:
  
 To ascertain if //X. campestris// pv. //vesicatoria// (//Xcv//) translocates AvrXv4 via the hrp-encoded TTSS into plant cells during infection, the calmodulin-dependent adenylate cyclase domain (Cya) of //Bordetella pertussis// cyclolysin as a sensitive reporter protein was employed. It was constructed a translational C-terminal fusion of the Cya reporter to the mature AvrXv4 protein (359 amino acids [aa]) (AvrXv4-Cya) and to the first 100 aa residues of AvrXv4 (AvrXv4<sub>1-100</sub>-Cya). Cya enzymatic activity requires eukaryotic calmodulin for the production of cAMP. Therefore, the Cya reporter protein produced in the bacterium must be translocated into the eukaryotic cell to be activated (Roden //et al//., 2004). Results of experiments showed that //Xcv// secretes AvrXv4 via the Hrp TTSS and translocates it directly through the cell wall into the interior of the plant cell. Furthermore, the N-terminal 100 aa of AvrXv4 are sufficient to target the type III-dependent secretion and translocation of the Cya reporter to plant cells (Roden //et al//., 2004). To ascertain if //X. campestris// pv. //vesicatoria// (//Xcv//) translocates AvrXv4 via the hrp-encoded TTSS into plant cells during infection, the calmodulin-dependent adenylate cyclase domain (Cya) of //Bordetella pertussis// cyclolysin as a sensitive reporter protein was employed. It was constructed a translational C-terminal fusion of the Cya reporter to the mature AvrXv4 protein (359 amino acids [aa]) (AvrXv4-Cya) and to the first 100 aa residues of AvrXv4 (AvrXv4<sub>1-100</sub>-Cya). Cya enzymatic activity requires eukaryotic calmodulin for the production of cAMP. Therefore, the Cya reporter protein produced in the bacterium must be translocated into the eukaryotic cell to be activated (Roden //et al//., 2004). Results of experiments showed that //Xcv// secretes AvrXv4 via the Hrp TTSS and translocates it directly through the cell wall into the interior of the plant cell. Furthermore, the N-terminal 100 aa of AvrXv4 are sufficient to target the type III-dependent secretion and translocation of the Cya reporter to plant cells (Roden //et al//., 2004).
 +
 +The immune pathway reasponsible for the perception of the //Xanthomonas perforans //effector XopJ4 wa sidentified in the plant //Nicotiana benthamiana. //Transient complemmentation assays were performed to determine the functionality of //xopJ4// gene variants and coimmunoprecipitation assays were used to gain insight into molecular mechanism of the pathway (Schultink //et al., //2019).
 === Regulation === === Regulation ===
  
-Presence of a PIP box (TTCGC-N15-TTCGC) (Astua-Monge //et al//., 2000).+Presence of a PIP box (TTCGC-N<sub>15</sub>-TTCGC) (Astua-Monge //et al//., 2000).
 === Phenotypes === === Phenotypes ===
  
 AvrXv4 is an avirulence protein in //X. campestris //pv. //vesicatoria //strain 91-118 that induces an //XV//-dependent HR in the wild tomato relative //Lycopersicon pennellii // (Astua-Monge //et al//., 2000; Roden //et al//., 2004; Sharlach //et al//., 2013). AvrXv4-dependent HR also is elicited in //Nicotiana benthamiana// plants when they are infected with //Xanthomonas// strains expressing untagged AvrXv4 and HA-tagged AvrXv4-HA (Roden //et al.,// 2004). AvrXv4 recognition by resistant plants requires a functional protease catalytic core, the domain that is conserved in all of the putative YopJ-like cysteine proteases. AvrXv4 expression in planta leads to a reduction in SUMO-modified proteins, demonstrating that AvrXv4 possesses SUMO isopeptidase activity. YopJ-like effector AvrXv4 encodes a type III SUMO protease effector that is active in the cytoplasmic compartment of plant cells (Roden //et al//., 2004). AvrXv4 is an avirulence protein in //X. campestris //pv. //vesicatoria //strain 91-118 that induces an //XV//-dependent HR in the wild tomato relative //Lycopersicon pennellii // (Astua-Monge //et al//., 2000; Roden //et al//., 2004; Sharlach //et al//., 2013). AvrXv4-dependent HR also is elicited in //Nicotiana benthamiana// plants when they are infected with //Xanthomonas// strains expressing untagged AvrXv4 and HA-tagged AvrXv4-HA (Roden //et al.,// 2004). AvrXv4 recognition by resistant plants requires a functional protease catalytic core, the domain that is conserved in all of the putative YopJ-like cysteine proteases. AvrXv4 expression in planta leads to a reduction in SUMO-modified proteins, demonstrating that AvrXv4 possesses SUMO isopeptidase activity. YopJ-like effector AvrXv4 encodes a type III SUMO protease effector that is active in the cytoplasmic compartment of plant cells (Roden //et al//., 2004).
 +
 +//N. benthamiana //ethyl methanesulfonate (EMS) mutants deficient for XopJ4 perception were idetified as having loss of function mutations in the gene encoding the nucleotide binding, leucine rich repeat (NLR) protein NbZAR1. Silecing of a recertor-like cytoplasmic kinase family XII gene, subsequently named XOPJ4 IMMUNITY 2 (JIM2), blocks perception of XopJ4 (Schultink //et al., //2019).
  
 **Localization** **Localization**
Line 56: Line 60:
 Lavie M, Shillington E, Eguiluz C, Grimsley N, Boucher C (2002). PopP1, a new member of the YopJ/AvrRxv family of type III effector proteins, acts as a host-specificity factor and modulates aggressiveness of //Ralstonia solanacearum//. Mol. Plant Microbe Interact. 15: 1058-1068. DOI: [[https://doi.org/10.1094/MPMI.2002.15.10.1058|10.1094/MPMI.2002.15.10.1058]] Lavie M, Shillington E, Eguiluz C, Grimsley N, Boucher C (2002). PopP1, a new member of the YopJ/AvrRxv family of type III effector proteins, acts as a host-specificity factor and modulates aggressiveness of //Ralstonia solanacearum//. Mol. Plant Microbe Interact. 15: 1058-1068. DOI: [[https://doi.org/10.1094/MPMI.2002.15.10.1058|10.1094/MPMI.2002.15.10.1058]]
  
-Roden J, Eardley L, Hotson A, Cao Y, MudgettMB (2004). Characterization of the //Xanthomonas// AvrXv4 effector, a SUMO protease translocated into plant cells. Mol. Plant Microbe. Interact. 17: 633-643. DOI: [[https://doi.org/10.1094/MPMI.2004.17.6.633|10.1094/MPMI.2004.17.6.633]]+Roden J, Eardley L, Hotson A, Cao Y, Mudgett MB (2004). Characterization of the //Xanthomonas// AvrXv4 effector, a SUMO protease translocated into plant cells. Mol. Plant Microbe. Interact. 17: 633-643. DOI: [[https://doi.org/10.1094/MPMI.2004.17.6.633|10.1094/MPMI.2004.17.6.633]]
  
-<font 10.5pt/inherit;;#333333;;inherit>Sharlach</font> M, <font inherit/inherit;;#333333;;inherit>Dahlbeck</font>D, <font inherit/inherit;;#333333;;inherit>Liu</font>L, <font inherit/inherit;;#333333;;inherit>Chiu</font>J,<font inherit/inherit;;#333333;;inherit>Jiménez-Gómez</font>JM, <font inherit/inherit;;#333333;;inherit>Kimura</font>S, <font inherit/inherit;;#333333;;inherit>Koenig</font>D, <font inherit/inherit;;#333333;;inherit>Maloof</font>JN, <font inherit/inherit;;#333333;;inherit>Sinha</font>N, <font inherit/inherit;;#333333;;inherit>Minsavage</font>GV, <font inherit/inherit;;#333333;;inherit>Jones</font>JB, <font inherit/inherit;;#333333;;inherit>Stall</font>RE, <font inherit/inherit;;#333333;;inherit>Staskawicz</font>BJ (2013). Fine genetic mapping of RXopJ4, a bacterial spot disease resistance locus from //Solanum pennellii// LA716. Theor Appl Genet. 126: 601-609. DOI: [[https://doi.org/10.1007/s00122-012-2004-6</font|10.1007/s00122-012-2004-6]]+<font 10.5pt/inherit;;#333333;;inherit>Sharlach</font> M, <font inherit/inherit;;#333333;;inherit>Dahlbeck</font>D, <font inherit/inherit;;#333333;;inherit>Liu</font>L, <font inherit/inherit;;#333333;;inherit>Chiu</font>J, <font inherit/inherit;;#333333;;inherit>Jiménez-Gómez</font>JM, <font inherit/inherit;;#333333;;inherit>Kimura</font>S, <font inherit/inherit;;#333333;;inherit>Koenig</font>D, <font inherit/inherit;;#333333;;inherit>Maloof</font>JN, <font inherit/inherit;;#333333;;inherit>Sinha</font>N, <font inherit/inherit;;#333333;;inherit>Minsavage</font>GV, <font inherit/inherit;;#333333;;inherit>Jones</font>JB, <font inherit/inherit;;#333333;;inherit>Stall</font>RE, <font inherit/inherit;;#333333;;inherit>Staskawicz</font>BJ (2013). Fine genetic mapping of RXopJ4, a bacterial spot disease resistance locus from //Solanum pennellii// LA716. Theor Appl Genet. 126: 601-609. DOI: [[https://doi.org/10.1007/s00122-012-2004-6</font|10.1007/s00122-012-2004-6]]
  
-Timilsina SAbrahamian PPotnis N, Minsavage GV, White FF, Staskawicz BJ, Jones JB, Vallad GE, Goss EM (2016). Analysis of sequenced genomes of //Xanthomonas perforans// identifies candidate targets for resistance breeding in tomatoPhytopathology 1061097-1104. DOI: [[https://doi.org/10.1094/PHYTO-03-16-0119-FI|10.1094/PHYTO-03-16-0119-FI]]+Schultink AQi TBally J, Staskawicz (2019). Using forward genetics in //Nicotiana benthamiana //to uncover the immune signaling pathway mediating recognition of the //Xanthomonas perforans //effector XopJ4New Phytologist 2211001-1009. DOI: [[https://doi.org/10.1111/nph.15411|10.1111/nph.15411]]
  
-<font 10.5pt/inherit;;#333333;;inherit>Timilsina S, Pereira-Martin JA, Minsavage GV, Iruegas-Bocardo</font> F<font inherit/inherit;;#333333;;inherit>Abrahamian</font>P<font inherit/inherit;;#333333;;inherit>Potnis</font>N<font inherit/inherit;;#333333;;inherit>Kolaczkowski</font>B, <font inherit/inherit;;#333333;;inherit>Vallad</font>GE, <font inherit/inherit;;#333333;;inherit>Goss</font>EM, <font inherit/inherit;;#333333;;inherit>Jones</font>JB (2019). Multiple recombination events drive the current genetic structure of //Xanthomonas perforans// in FloridaFront Microbiol. 10448. DOI: __[[https://doi.org/10.3389/fmicb.2019.00448</font|10.3389/fmicb.2019.00448</font]]> __+Timilsina S, Abrahamian P, Potnis N, Minsavage GV, White FFStaskawicz BJJones JB, Vallad GE, Goss EM (2016). Analysis of sequenced genomes of //Xanthomonas perforans// identifies candidate targets for resistance breeding in tomatoPhytopathology 1061097-1104. DOI: [[https://doi.org/10.1094/PHYTO-03-16-0119-FI|10.1094/PHYTO-03-16-0119-FI]]
  
 +Timilsina S, Pereira-Martin JA, Minsavage GV, Iruegas-Bocardo F, Abrahamian, Potnis N, Kolaczkowski B, Vallad GE, Goss EM, Jones JB (2019). Multiple recombination events drive the current genetic structure of //Xanthomonas perforans// in Florida. Front Microbiol. 10: 448. DOI: [[https://doi.org/10.3389/fmicb.2019.00448|10.3389/fmicb.2019.00448]]
  
bacteria/t3e/xopj4.1594305923.txt.gz · Last modified: 2020/07/09 16:45 by rkoebnik