User Tools

Site Tools


bacteria:t3e:xopn

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Last revision Both sides next revision
bacteria:t3e:xopn [2020/08/09 20:14]
jvicente
bacteria:t3e:xopn [2020/08/09 20:27]
jvicente
Line 31: Line 31:
   * XopN has been shown to be required for maximal pathogenicity of //X. axonopodis//  pv. //punicae//  (//Xap//) in pomegranate (Kumar and Mondal, 2013). The deletion of XopN from Xap caused higher accumulation of reactive oxygen species showing that XopN suppresses ROS-mdeiated defense responses during blight pathogenesis in pomegranate (Kumar //et al.//, 2016).   * XopN has been shown to be required for maximal pathogenicity of //X. axonopodis//  pv. //punicae//  (//Xap//) in pomegranate (Kumar and Mondal, 2013). The deletion of XopN from Xap caused higher accumulation of reactive oxygen species showing that XopN suppresses ROS-mdeiated defense responses during blight pathogenesis in pomegranate (Kumar //et al.//, 2016).
   * A Δ//xopN//–Δ//xopQ //double knock-out mutant in //X. phaseoli//  pv. //manihotis//  (//Xpm//) was less aggressive in the cassava host plant than its single mutation counterparts. In addition, //in planta //  bacterial growth was reduced at 5 dpi in the double mutant with respect to the wild-type strain CIO151 and individual knock-out strains. The phenotype of the double mutant could be complemented when transforming a plasmid containing //xopQ//. These results confirmed that //xopN //and// xopQ //are functionally redundant in //Xpm//  (Medina //et al.//, 2017).   * A Δ//xopN//–Δ//xopQ //double knock-out mutant in //X. phaseoli//  pv. //manihotis//  (//Xpm//) was less aggressive in the cassava host plant than its single mutation counterparts. In addition, //in planta //  bacterial growth was reduced at 5 dpi in the double mutant with respect to the wild-type strain CIO151 and individual knock-out strains. The phenotype of the double mutant could be complemented when transforming a plasmid containing //xopQ//. These results confirmed that //xopN //and// xopQ //are functionally redundant in //Xpm//  (Medina //et al.//, 2017).
-  * XopN was shown to contribute significantly to //X. oryzae//  pv. //oryzae//  (Xoo) virulence on a susceptible rice variety Nipponbare. XopN was shown to be highly translocated to suppress rice defense responses (Mo //et al.//, 2020). +  * //Agrobacterium// mediated transient transfer of the gene for XopN resulted in suppression of rice innate immune responses induced by LipA, a hydrolitic enzyme secreted by //X. oryzae//  pv. //oryzae//  (Xoo), but a //xopN// <sup>//-// </sup>  mutant of //Xoo// retains the ability to suppress these innate immune responses indicating other functionally redundant proteins; amongst these proteins, XopQ, XopX and XopZ are suppressors of LipA induced innate immune responses; mutation in any one of the //xopN, xopQ, xopX or xopZ// genes causes partial virulence deficiency (Sinha et al., 2013). XopN was shown to contribute significantly to //X. oryzae//  pv. //oryzae//  (Xoo) virulence on a susceptible rice variety Nipponbare. XopN was shown to be highly translocated to suppress rice defense responses (Mo //et al.//, 2020). 
-  * XopN and AvrBS2 were shown to significantly contribute to virulence of //X. oryzae//  pv. //oryzicola// (Xoc GX01) (Liao //et al.//, 2020).+  * XopN and AvrBS2 were shown to significantly contribute to virulence of //X. oryzae//  pv. //oryzicola//  (Xoc GX01) (Liao //et al.//, 2020).
  
 === Localization === === Localization ===
Line 41: Line 41:
  
 XopN binds TARK1, a tomato atypical receptor kinase required for PTI. Taylor //et al.//  (2012) showed that XopN promotes TARK1/TFT1 complex formation //in vitro//  and //in planta//  by functioning as a molecular scaffold.TFT proteins are involved in immune signaling during //X. euvesicatoria//  infection and can interact with multiple effectors including XopN (Dubrow //et al.//, 2018). TARK1 was shown to interact with proteins predicted to be associated with stomatal closure (Guzman et al., 2020). XopN binds TARK1, a tomato atypical receptor kinase required for PTI. Taylor //et al.//  (2012) showed that XopN promotes TARK1/TFT1 complex formation //in vitro//  and //in planta//  by functioning as a molecular scaffold.TFT proteins are involved in immune signaling during //X. euvesicatoria//  infection and can interact with multiple effectors including XopN (Dubrow //et al.//, 2018). TARK1 was shown to interact with proteins predicted to be associated with stomatal closure (Guzman et al., 2020).
 +
 +Three effectors (XopZ, XopN and XopV) were shown to be able to supress the peptidoglycan-triggered MAPK activation and a triple mutant of Xoo lacking these genes showed additively reduced virulence (Long et al., 2018).
  
 === Interaction partners === === Interaction partners ===
Line 78: Line 80:
 Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae//  pv. //oryzae//  requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS Microbiol. Lett. 363: fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]] Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae//  pv. //oryzae//  requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS Microbiol. Lett. 363: fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]]
  
-Long J, Song C, Yan F, Zhou J, Zhou H, Yang B (2018). Non-TAL effectors from //Xanthomonas oryzae//  pv. //oryzae//  suppress peptidoglycan-triggered MAPK activation in rice. Front. Plant Sci. 9: 1857. doi: [[https://doi.org/10.3389/fpls.2018.01857|10.3389/fpls.2018.01857]]FIXME  Information needs to be added to the profile.+Long J, Song C, Yan F, Zhou J, Zhou H, Yang B (2018). Non-TAL effectors from //Xanthomonas oryzae//  pv. //oryzae//  suppress peptidoglycan-triggered MAPK activation in rice. Front. Plant Sci. 9: 1857. doi: [[https://doi.org/10.3389/fpls.2018.01857|10.3389/fpls.2018.01857]]
  
 Medina CA, Reyes PA, Trujillo CA, Gonzalez JL, Bejarano DA, Montenegro NA, Jacobs JM, Joe A, Restrepo S, Alfano JR, Bernal A (2018). The role of type III effectors from //Xanthomonas axonopodis//  pv. //manihotis//  in virulence and suppression of plant immunity. Mol. Plant Pathol. 19: 593-606. DOI:[[https://doi.org/10.1111/mpp.12545|10.1111/mpp.12545]] Medina CA, Reyes PA, Trujillo CA, Gonzalez JL, Bejarano DA, Montenegro NA, Jacobs JM, Joe A, Restrepo S, Alfano JR, Bernal A (2018). The role of type III effectors from //Xanthomonas axonopodis//  pv. //manihotis//  in virulence and suppression of plant immunity. Mol. Plant Pathol. 19: 593-606. DOI:[[https://doi.org/10.1111/mpp.12545|10.1111/mpp.12545]]
Line 86: Line 88:
 Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas//  infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]] Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas//  infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]]
  
-Sinha D, Gupta MK, Patel HK, Ranjan A, Sonti RV (2013). Cell wall degrading enzyme induced rice innate immune responses are suppressed by the type 3 secretion system effectors XopN, XopQ, XopX and XopZ of //Xanthomonas oryzae//  pv. //oryzae//. PLoS One 8: e75867. DOI: [[https://doi.org/10.1371/journal.pone.0075867|10.1371/journal.pone.0075867]]FIXME  Information needs to be added to the profile.+Sinha D, Gupta MK, Patel HK, Ranjan A, Sonti RV (2013). Cell wall degrading enzyme induced rice innate immune responses are suppressed by the type 3 secretion system effectors XopN, XopQ, XopX and XopZ of //Xanthomonas oryzae//  pv. //oryzae//. PLoS One 8: e75867. DOI: [[https://doi.org/10.1371/journal.pone.0075867|10.1371/journal.pone.007586]]7
  
 Taylor KW, Kim JG, Su XB, Aakre CD, Roden JA, Adams CM, Mudgett MB (2012). Tomato TFT1 is required for PAMP-triggered immunity and mutations that prevent T3S effector XopN from binding to TFT1 attenuate //Xanthomonas//  virulence. PLoS Pathog. 8: e1002768. DOI: [[https://doi.org/10.1371/journal.ppat.1002768|10.1371/journal.ppat.1002768]] Taylor KW, Kim JG, Su XB, Aakre CD, Roden JA, Adams CM, Mudgett MB (2012). Tomato TFT1 is required for PAMP-triggered immunity and mutations that prevent T3S effector XopN from binding to TFT1 attenuate //Xanthomonas//  virulence. PLoS Pathog. 8: e1002768. DOI: [[https://doi.org/10.1371/journal.ppat.1002768|10.1371/journal.ppat.1002768]]
  
bacteria/t3e/xopn.txt · Last modified: 2020/08/09 20:32 by jvicente