User Tools

Site Tools


bacteria:t3e:xopo

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopo [2020/07/09 11:05]
rkoebnik [XopO]
bacteria:t3e:xopo [2020/11/26 16:16] (current)
zdubrow
Line 3: Line 3:
 Author: Harrold van den Burg\\ Author: Harrold van den Burg\\
 Internal reviewer: [[https://www.researchgate.net/profile/Jakub_Pecenka|Jakub Pečenka]]\\ Internal reviewer: [[https://www.researchgate.net/profile/Jakub_Pecenka|Jakub Pečenka]]\\
-Expert reviewer: FIXME+Expert reviewer: Zoe Dubrow
  
 Class: XopO\\ Class: XopO\\
Line 15: Line 15:
 === How discovered? === === How discovered? ===
  
-XopO was identified in a genetic screen, using a Tn//5//-based transposon construct harboring the coding sequence for the HR-inducing domain of AvrBs2, but devoid of the effectors' T3SS signal, that was randomly inserted into the genome of //X. campestris// pv. //vesicatoria// (//Xcv//)// //// //strain 85-10. The XopO::AvrBs2 fusion protein triggered a //Bs2//-dependent hypersensitive response (HR) in pepper leaves (Roden //et al//., 2004).+XopO was identified in a genetic screen, using a Tn//5//-based transposon construct harboring the coding sequence for the HR-inducing domain of AvrBs2, but devoid of the effectors' T3SS signal, that was randomly inserted into the genome of //X. campestris// pv. //vesicatoria// (//Xcv//)strain 85-10. The XopO::AvrBs2 fusion protein triggered a //Bs2//-dependent hypersensitive response (HR) in pepper leaves (Roden //et al//., 2004).
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
Line 40: Line 40:
 === Interaction partners === === Interaction partners ===
  
-XopO was shown to interact with tomato 14-3-3- proteins (TFT) (Dubrow //et al//., 2018).+XopO was shown to interact with tomato 14-3-3 (TFT) proteins (Dubrow //et al//., 2018).
  
 ===== Conservation ===== ===== Conservation =====
Line 46: Line 46:
 === In xanthomonads === === In xanthomonads ===
  
-Yes, in some xanthomonads (//e.g.//, //X. euvesicatoria//, //X. oryzae//) (Lang //et al//., 2019). The //xopO//  gene is a differential T3E gene between //Xoo//  and //Xoc//  (Hajri //et al//., 2012).+Yes, in some xanthomonads (//e.g.//, //X. euvesicatoria//, //X. oryzae//) (Lang //et al//., 2019). X//opO// is a differential T3E gene between //Xoo//  and //Xoc//  (Hajri //et al//., 2012).
  
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
-Yes, //e.g.//  //Pseudomonas syringae//  (Li //et al//., 2014).+Yes, //e.g.// homologs (AvrRps4 and HopK1) in //Pseudomonas syringae//  (Li //et al//., 2014).
  
 ===== References ===== ===== References =====
Line 60: Line 60:
 Hajri A, Brin C, Zhao S, David P, Feng JX, Koebnik R, Szurek B, Verdier V, Boureau T, Poussier S (2012). Multilocus sequence analysis and type III effector repertoire mining provide new insights into the evolutionary history and virulence of //Xanthomonas oryzae//. Mol. Plant Pathol. 13: 288-302. DOI: [[https://doi.org/10.1111/j.1364-3703.2011.00745.x|10.1111/j.1364-3703.2011.00745.x]] Hajri A, Brin C, Zhao S, David P, Feng JX, Koebnik R, Szurek B, Verdier V, Boureau T, Poussier S (2012). Multilocus sequence analysis and type III effector repertoire mining provide new insights into the evolutionary history and virulence of //Xanthomonas oryzae//. Mol. Plant Pathol. 13: 288-302. DOI: [[https://doi.org/10.1111/j.1364-3703.2011.00745.x|10.1111/j.1364-3703.2011.00745.x]]
  
-Koebnik R, Kruger A, Thieme F, Urban A, Bonas U (2006). Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J. Bacteriol. 188: 7652-7660. DOI: [[https://doi.org/10.1128/JB.00795-06|10.1128/JB.00795-06]]+Koebnik R, Krüger A, Thieme F, Urban A, Bonas U (2006). Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J. Bacteriol. 188: 7652-7660. DOI: [[https://doi.org/10.1128/JB.00795-06|10.1128/JB.00795-06]]
  
 Lang JM, Pérez-Quintero AL, Koebnik R, DuCharme E, Sarra S, Doucoure H, Keita I, Ziegle J, Jacobs JM, Oliva R, Koita O, Szurek B, Verdier V, Leach JE (2019). A pathovar of //Xanthomonas oryzae //infecting wild grasses provides insight into the evolution of pathogenicity in rice agroecosystems. Front. Plant Sci. 10: 1–15. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.3389/fpls.2019.00507]] Lang JM, Pérez-Quintero AL, Koebnik R, DuCharme E, Sarra S, Doucoure H, Keita I, Ziegle J, Jacobs JM, Oliva R, Koita O, Szurek B, Verdier V, Leach JE (2019). A pathovar of //Xanthomonas oryzae //infecting wild grasses provides insight into the evolution of pathogenicity in rice agroecosystems. Front. Plant Sci. 10: 1–15. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.3389/fpls.2019.00507]]
Line 69: Line 69:
  
 Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas//  infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]] Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas//  infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]]
 +
 +Sohn KH, Zhang Y, Jones JD (2009). The //Pseudomonas syringae//  effector protein, AvrRPS4, requires in planta processing and the KRVY domain to function. Plant J. 57: 1079-1091. DOI: [[https://doi.org/10.1111/j.1365-313X.2008.03751.x|10.1111/j.1365-313X.2008.03751.x]] FIXME  Information needs to be added to the profile.
  
 Teper D, Sunitha S, Martin GB, Sessa G (2015). Five //Xanthomonas//  type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. Plant Signal. Behav. 10: e1064573. DOI: [[https://doi.org/10.1080/15592324.2015.1064573|10.1080/15592324.2015.1064573]] Teper D, Sunitha S, Martin GB, Sessa G (2015). Five //Xanthomonas//  type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. Plant Signal. Behav. 10: e1064573. DOI: [[https://doi.org/10.1080/15592324.2015.1064573|10.1080/15592324.2015.1064573]]
  
bacteria/t3e/xopo.1594285530.txt.gz · Last modified: 2020/07/09 11:05 by rkoebnik