User Tools

Site Tools


bacteria:t3e:xops

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
bacteria:t3e:xops [2020/08/29 23:14]
sujan.timilsina
bacteria:t3e:xops [2022/07/19 12:52]
rkoebnik [Biological function]
Line 3: Line 3:
 Author: [[https://www.researchgate.net/profile/Gabor_Rakhely|Gábor Rákheli]]\\ Author: [[https://www.researchgate.net/profile/Gabor_Rakhely|Gábor Rákheli]]\\
 Internal reviewer: [[https://www.researchgate.net/profile/Fernando_Tavares|Fernando Tavares]]\\ Internal reviewer: [[https://www.researchgate.net/profile/Fernando_Tavares|Fernando Tavares]]\\
-Expert reviewer: FIXME+Expert reviewer: [[https://www.researchgate.net/profile/Sujan_Timilsina|Sujan Timilsina]]
  
 Class: XopS\\ Class: XopS\\
Line 15: Line 15:
 === How discovered? === === How discovered? ===
  
-Although no homology was found between XopS and other T3E effectors, //xopS //was putatively identified by the presence of a plant-inducer promoter (PIP) box, a lower GC content suggesting acquisition by HGT, and co-expression with other T3E genes (Schulze //et al.//, 2012). Deficient mutants and overexpression studies revealed that XopB and XopS contribute to disease symptoms and bacterial growth, and suppress plant defense gene expression (Schulze //et al.//, 2012).+Although no homology was found between XopS and other T3E effectors, //xopS //was putatively identified by the presence of a plant-induced promoter (PIP) box, a lower G+C content suggesting acquisition by HGT, and co-expression with other T3E genes (Schulze //et al.//, 2012). Deficient mutants and overexpression studies revealed that XopB and XopS contribute to disease symptoms and bacterial growth, and suppress plant defense gene expression (Schulze //et al.//, 2012).
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
Line 37: Line 37:
 === Interaction partners === === Interaction partners ===
  
-Unknown.+XopS<sub>//Xcv//85-10</sub> interacts with WRKY40, a transcriptional regulator of defense gene expression (Raffeiner //et al.//, 2022).
  
 ===== Conservation ===== ===== Conservation =====
Line 43: Line 43:
 === In xanthomonads === === In xanthomonads ===
  
-Yes (//e.g.//, //Xanthomonas euvesicatoria//, //X. perforans//) (Barak //et al//., 2016 ).+Yes (//e.g.//, //Xanthomonas euvesicatoria//, //X. perforans, X. citri//) (Barak //et al//., 2016; Fonseca //et al.//, 2019).
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
Line 51: Line 51:
  
 Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016). Whole-genome sequences of //Xanthomonas euvesicatoria// strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Front. Plant Sci. 7: 1805. DOI: [[https://doi.org/10.3389/fpls.2016.01805|10.3389/fpls.2016.01805]] Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016). Whole-genome sequences of //Xanthomonas euvesicatoria// strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Front. Plant Sci. 7: 1805. DOI: [[https://doi.org/10.3389/fpls.2016.01805|10.3389/fpls.2016.01805]]
 +
 +Fonseca NP, Patané JSL, Varani AM, Felestrino EB, Caneschi WL, Sanchez AB, Cordeiro IF, Lemes CGC, Assis RAB, Garcia CCM, Belasque Jr. J, Martins Jr J, Facincani AP, Ferreira RM, Jaciani FJ, Almeida NF, Ferro JA, Moreira LM, Setubal JC (2019). Analyses of seven new genomes of //Xanthomonas citri// pv. //aurantifolii// strains, causative agents of citrus canker B and C, show a reduced repertoire of pathogenicity genes. Front Microbiol. 10: 2361. DOI: [[https://doi.org/10.3389/fmicb.2019.02361|10.3389/fmicb.2019.02361]]
 +
 +Raffeiner M, Üstün S, Guerra T, Spinti D, Fitzner M, Sonnewald S, Baldermann S, Börnke F (2022). The //Xanthomonas// type-III effector XopS stabilizes CaWRKY40a to regulate defense responses and stomatal immunity in pepper (//Capsicum annuum//). Plant Cell 34: 1684-1708. DOI: [[https://doi.org/10.1093/plcell/koac032|10.1093/plcell/koac032]]
  
 Schulze S, Kay S, Büttner D, Egler M, Eschen-Lippold L, Hause G, Krüger A, Lee J, Müller O, Scheel D, Szczesny R, Thieme F, Bonas U (2012). Analysis of new type III effectors from //Xanthomonas// uncovers XopB and XopS as suppressors of plant immunity. New Phytol. 195: 894-911. DOI: [[https://doi.org/10.1111/j.1469-8137.2012.04210.x|10.1111/j.1469-8137.2012.04210.x]] Schulze S, Kay S, Büttner D, Egler M, Eschen-Lippold L, Hause G, Krüger A, Lee J, Müller O, Scheel D, Szczesny R, Thieme F, Bonas U (2012). Analysis of new type III effectors from //Xanthomonas// uncovers XopB and XopS as suppressors of plant immunity. New Phytol. 195: 894-911. DOI: [[https://doi.org/10.1111/j.1469-8137.2012.04210.x|10.1111/j.1469-8137.2012.04210.x]]
  
bacteria/t3e/xops.txt · Last modified: 2022/07/19 12:56 by rkoebnik