User Tools

Site Tools


bacteria:t3e:xopv

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopv [2020/07/17 10:44]
rkoebnik
bacteria:t3e:xopv [2021/01/07 06:08] (current)
s_tsuge [Biological function]
Line 3: Line 3:
 Author: Coline Sciallano\\ Author: Coline Sciallano\\
 Internal reviewer: [[https://www.researchgate.net/profile/Gabor_Rakhely|Gábor Rákheli]]\\ Internal reviewer: [[https://www.researchgate.net/profile/Gabor_Rakhely|Gábor Rákheli]]\\
-Expert reviewer: FIXME+Expert reviewer: Seiji Tsuge
  
 Class: XopV\\ Class: XopV\\
Line 15: Line 15:
 === How discovered? === === How discovered? ===
  
-XopV was discovered via genome-wide screening for effector candidates in //X. oryzae// pv. //oryzae// (//Xoo//) strain MAFF 311018 in accordance with three criteria: i) ORF encoding proteins homologous to effectors of //P. syringae// strains and //X. campestris// pv. //vesicatoria//, ii) HrpX regulons preceded by two cis elements (Plant Induced Promoter, PIP ; and -10 box-like motif) or iii) proteins with an N-terminal amino acid composition similar to known effectors (more than 10% of Ser in the first 50 amino aa, no Asp or Glu residues in the first 12 aa, and an aliphatic amino acid or Pro at the third or fourth position) (Furutani //et al//., 2009).+XopV was discovered via genome-wide screening for effector candidates in //X. oryzae// pv. //oryzae// (//Xoo//) strain MAFF 311018 in accordance with three criteria: i) ORF encoding proteins homologous to effectors of //P. syringae// strains and //X. campestris// pv. //vesicatoria//, ii) HrpX regulons preceded by two cis elements (Plant Induced Promoter, PIP; and -10 box-like motif) or iii) proteins with an N-terminal amino acid composition similar to known effectors (more than 10% of Ser in the first 50 amino aa, no Asp or Glu residues in the first 12 aa, and an aliphatic amino acid or Pro at the third or fourth position) (Furutani //et al//., 2009).
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-XopV (XOO3803 in Furutani //et al//., 2009) has been shown to be translocated through the T3SS thanks to a XopV fusion with a calmodulin-dependant adenylate cyclase reporter in //Xanthomonas oryzae//, and further tests using a T3SS deficient strain (Furutani //et al//., 2009).+ TT3S-dependent translocation of XopV has been shown by a calmodulin-dependent adenylate cyclase reporter assay (Furutani //et al//., 2009). 
 === Regulation === === Regulation ===
  
-Expression of XopV has been shown to be regulated by HrpX using a construction with //xopV// and an adenylate cyclase reporter system in hrp-inducing medium. Also, no adenylate cyclase activity and no //xopV// transcript accumulation could be detected in a //hrpX// deficient strain with the same construction (Furutani //et al//.2009).+ //xopV// was shown to contain the PIP-box motif in their promoter region, and the expression was found to be regulated by HrpX using a β -glucuronidase (GUS) reporter assay in //hrp//-inducing medium (Tsuge //et al.//, 2005).
  
-qRT-PCR revealed that transcript levels of 15 out of 18 tested non-TAL effector genes (as well as the regulatory genes //hrpG// and //hrpX//), including //xopV//, were significantly reduced in the //Xoo// Δ//xrvC// mutant compared with those in the wild-type strain PXO99<sup>A</sup>  (Liu //et al.//, 2016). 
 === Phenotypes === === Phenotypes ===
  
-An individual mutant for //xopV// in //Xoo //PXO99<sup>A</sup>  did not show reduced virulence on rice variety Kitaake and IR24 (Song & Yang, 2010). significant reduction in lesion length on Kitaake was observed when inoculated by leaf-clipping with a triple mutant of PXO99A for //xopV//, //xopZ// (two copies) and //xopN//. But interestingly, no differences in virulence were observed when comparing the WT PXO99<sup>A</sup>  strain and individual or double mutants for each of these effectors (//xopV//, //xopZ//, //xopN//). Altogether, these information indicate XopV as one small of the collective contributors to //Xoo //virulence (Long //et al//.2018).+<font 14px/Arial,Helvetica,sans-serif;;inherit;;inherit>Popov //et al.// (2016) reported that //Xanthomonas euvesicatoria// XopV inhibits flg22-triggered immunity in //Arabidopsis thaliana //using apathogen-free cell system for transient gene expression analysis.</font> 
 + 
 +<font 14px/Arial,Helvetica,sans-serif;;rgb(62, 61, 64);;inherit>An individual mutant for //xopV// in Xoo PXO99<sup>A</sup> did not show reduced virulence on rice varieties IR24 (Song & Yang, 2010) and Kitaake (Long //et al.//, 2018). But interestingly,significant reduction in lesion length on Kitaake was observed when inoculated with a triple mutant of PXO99<sup>A</sup> for //xopV//, //xopZ// (two copies) and //xopN// although no differences in virulence were observed when comparing the WT PXO99<sup>A</sup> strain and individual or double mutants for each of these effector genes (//xopV//, //xopZ//, //xopN//). Three effectors were shown to be able to suppress the peptidoglycan-triggered MAPK activation when individually expressed in rice cells.The results indicate that XopV, along with XopZ and XopN, collectively and redundantly contributes virulence in rice</font> (Long //et al.//, 2018)<font inherit/inherit;;rgb(62, 61, 64);;inherit>.</font> 
 + 
 +<font 14px/Arial,Helvetica,sans-serif;;inherit;;inherit>//Agrobacterium//-mediated transient expression of both XopQ and XopX in rice cells resulted in induction of rice immune responses, which were not observed when either protein was individually expressed. Five effectors, XopV, XopU, XopP, XopG and AvrBs2, could individually suppress these immune responses, which suggests a complex interplay of //Xanthomonas //effectors in suppression of not only pathogen-triggered immunity but also effector-triggered immunity to promote virulence on rice (Deb //et al.//, 2020).</font>
  
-//Agrobacterium//-mediated transient expression of both XopQ and XopX in rice cells resulted in induction of rice immune responses, which were not observed when either protein was individually expressed. A screen for //Xanthomonas// effectors which can suppress XopQ-XopX induced rice immune responses, led to the identification of five effectors, namely XopU, XopV, XopP, XopG and AvrBs2, that could individually suppress these immune responses. These results suggest a complex interplay of //Xanthomonas// T3SS effectors in suppression of both pathogen-triggered immunity and effector-triggered immunity to promote virulence on rice (Deb //et al.//, 2020). 
 === Localization === === Localization ===
  
Line 49: Line 52:
  
 Yes, examples: //Pseudomonas cissicola//, //Ralstonia solanacearum//, //Acidovorax citrulli//. Yes, examples: //Pseudomonas cissicola//, //Ralstonia solanacearum//, //Acidovorax citrulli//.
-===== Conservation ===== 
- 
-=== In xanthomonads === 
- 
-Yes, examples : //X. campestris//, //X. euvesicatoria//, //X. oryzae//, //X. vasicola//, //X. phaseoli//, //X. citri//, //X. axonopodis//. 
-=== In other plant pathogens/symbionts === 
- 
-Yes, examples : //P. cissicola//, //R. solanacearum//, //A. citrulli//. 
 ===== References ===== ===== References =====
  
-Deb S, Ghosh P, Patel HK, Sonti RV (2020). Interaction of the //Xanthomonas// effectors XopQ and XopX results in induction of rice immune responses. Plant J., in press. DOI: [[https://doi.org/10.1111/tpj.14924|10.1111/tpj.14924]]+Deb S, Ghosh P, Patel HK, Sonti RV (2020). Interaction of the //Xanthomonas// effectors XopQ and XopX results in induction of rice immune responses. Plant J. 104: 332-350. DOI: [[https://doi.org/10.1111/tpj.14924|10.1111/tpj.14924]]
  
 Furutani A, Takaoka M, Sanada H, Noguchi Y, Oku T, Tsuno K, Tsuge S (2009). Identification of novel type III secretion effectors in //Xanthomonas oryzae// pv. //oryzae//. Mol. Plant Microbe Interact. 22: 96-106. DOI: [[https://doi.org/10.1094/mpmi-22-1-0096|10.1094/mpmi-22-1-0096]] Furutani A, Takaoka M, Sanada H, Noguchi Y, Oku T, Tsuno K, Tsuge S (2009). Identification of novel type III secretion effectors in //Xanthomonas oryzae// pv. //oryzae//. Mol. Plant Microbe Interact. 22: 96-106. DOI: [[https://doi.org/10.1094/mpmi-22-1-0096|10.1094/mpmi-22-1-0096]]
- 
-Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae// pv. //oryzae// requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS Microbiol. Lett. 363: fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]] 
  
 Long J, Song C, Yan F, Zhou J, Zhou H, Yang B (2018). Non-TAL effectors from //Xanthomonas oryzae// pv. //oryzae// suppress peptidoglycan-triggered MAPK activation in rice. Front. Plant Sci. 12: 1857. DOI: [[https://doi.org/10.3389/fpls.2018.01857|10.3389/fpls.2018.01857]] Long J, Song C, Yan F, Zhou J, Zhou H, Yang B (2018). Non-TAL effectors from //Xanthomonas oryzae// pv. //oryzae// suppress peptidoglycan-triggered MAPK activation in rice. Front. Plant Sci. 12: 1857. DOI: [[https://doi.org/10.3389/fpls.2018.01857|10.3389/fpls.2018.01857]]
 +
 +Popov G, Fraiture M, Brunner B, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29:651–660. DOI:[[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]
  
 Song C, Yang B (2010). Mutagenesis of 18 type III effectors reveals virulence function of XopZ<sub>PXO99</sub> in //Xanthomonas oryzae// pv. //oryzae//. Mol. Plant Microbe Interact. 23: 893-902. DOI: [[https://doi.org/10.1094/mpmi-23-7-0893|10.1094/mpmi-23-7-0893]] Song C, Yang B (2010). Mutagenesis of 18 type III effectors reveals virulence function of XopZ<sub>PXO99</sub> in //Xanthomonas oryzae// pv. //oryzae//. Mol. Plant Microbe Interact. 23: 893-902. DOI: [[https://doi.org/10.1094/mpmi-23-7-0893|10.1094/mpmi-23-7-0893]]
  
-===== References ===== +<font 14px/Arial,Helvetica,sans-serif;;inherit;;inherit>Tsuge STerashima S, Furutani A, Ochiai H, Oku T, Tsuno K, Kaku H, Kubo Y (2005). Effects on promoter activity of base substitutions in the //cis//-acting regulatory element of HrpXo regulons in //Xanthomonas oryzae //pv. //oryzae//JBacteriology 1872308-2314.</font>DOI: [[https://www.doi.org/10.1128/JB.187.7.2308-2314.2005|10.1128/JB.187.7.2308-2314.2005]]
- +
-Deb SGhosh PPatel HKSonti RV (2020). Interaction of the //Xanthomonas// effectors XopQ and XopX results in induction of rice immune responses. Plant J.in press. DOI: [[https://doi.org/10.1111/tpj.14924|10.1111/tpj.14924]] +
- +
-Furutani A, Takaoka M, Sanada H, Noguchi Y, Oku T, Tsuno K, Tsuge S (2009). Identification of novel type III secretion effectors in //Xanthomonas oryzae// pv. //oryzae//. Mol. Plant Microbe Interact. 22: 96-106. DOI: [[https://doi.org/10.1094/mpmi-22-1-0096|10.1094/mpmi-22-1-0096]] +
- +
-Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae// pv. //oryzae// requires H-NS-family protein XrvC to regulate virulence during rice infectionFEMS MicrobiolLett. 363fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]] +
- +
-Long J, Song C, Yan F, Zhou J, Zhou H, Yang B (2018)Non-TAL effectors from //Xanthomonas oryzae// pv//oryzae// suppress peptidoglycan-triggered MAPK activation in rice. Front. Plant Sci. 12: 1857. DOI: [[https://doi.org/10.3389/fpls.2018.01857|10.3389/fpls.2018.01857]] +
- +
-Song C, Yang B (2010)Mutagenesis of 18 type III effectors reveals virulence function of XopZ<sub>PXO99</sub> in //Xanthomonas oryzae// pv. //oryzae//. Mol. Plant Microbe Interact. 23: 893-902DOI: [[https://doi.org/10.1094/mpmi-23-7-0893|10.1094/mpmi-23-7-0893]]+
  
bacteria/t3e/xopv.1594975471.txt.gz · Last modified: 2020/07/17 10:44 by rkoebnik