User Tools

Site Tools


bacteria:t3e:xopap

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
bacteria:t3e:xopap [2020/08/02 23:37]
jfpothier
bacteria:t3e:xopap [2020/11/26 20:21]
doron.teper
Line 1: Line 1:
-====== XopAP ====== 
- 
-Author: [[https://www.researchgate.net/profile/Saul_Burdman|Saul Burdman]]\\ 
-Internal reviewer: [[https://www.researchgate.net/profile/Joel_Pothier2|Joël F. Pothier]]\\ 
-Expert reviewer: FIXME 
- 
-Class: XopAP\\ 
-Family: XopAP\\ 
-Prototype: XopAP (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\ 
-RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/CAJ24869.1|CAJ24869.1]] (464 aa)\\ 
-3D structure: Unknown 
- 
 ===== Biological function ===== ===== Biological function =====
  
Line 21: Line 9:
 === Regulation === === Regulation ===
  
-Unknown. In //X. euvesicatoria// strain 85-10, the //xopAP// gene does not contain a PIP-box motif in its promoter region (Teper //et al//., 2016).+In //X. euvesicatoria// strain 85-10, the //xopAP// gene does not contain a PIP-box motif in its promoter region (Teper //et al//., 2016).  //xopAP  //in // X. citri  //pv. // citri  //is positively regulated by the stringent response regulators RelA and SpoT   (Zhang et al. 2019). 
 === Phenotypes === === Phenotypes ===
  
Line 32: Line 21:
 === Enzymatic function === === Enzymatic function ===
  
-Unknown. XopAL contains a putative lipase domain (lipase class 3 family domain; conserved protein domain family [[https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=PLN03037|PLN03037]]) in amino acid positions 236-322 (Teper //et al//., 2016).+Unknown. XopAP contains a putative lipase domain (lipase class 3 family domain; conserved protein domain family [[https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=PLN03037|PLN03037]]) in amino acid positions 236-322 (Teper //et al//., 2016).
 === Interaction partners === === Interaction partners ===
  
Line 41: Line 30:
 === In xanthomonads === === In xanthomonads ===
  
-Yes (//e.g.,// //X. campestris//, X//. axonopodis//, //X. perforans//, X//. citri, X. alfalfae//, //X. prunicola//, //X. phaseoli//, //X. hortorum//, //X. arboricola//, //X. translucens//, //X. oryzae//, //X. hyacinthi, X. transluscens//) (Potnis //et al//., 2011; Jalan et al., 2013; Peng //et al//., 2016).+Yes (//e.g.,// //X. campestris//, X//. axonopodis//, //X. perforans//, X//. citri, X. alfalfae//, //X. prunicola//, //X. phaseoli//, //X. hortorum//, //X. arboricola//, //X. translucens//, //X. oryzae//, //X. hyacinthi, X. transluscens//) (e.g Potnis //et al//., 2011; Jalan et al., 2013; Peng //et al//., 2016; Constantin //et al//., 2017).
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
Line 47: Line 36:
 ===== References ===== ===== References =====
  
-Jalan N, Kumar D, Andrade MO, Yu F, Jones JB, Graham JH, White FF, Setubal JC, Wang N (2013). Comparative genomic and transcriptome analyses of pathotypes of //Xanthomonas citri// subsp. //citri// provide insights into mechanisms of bacterial virulence and host range. BMC Genomics 14,** **551. DOI: [[https://doi.org/10.1186/1471-2164-14-551|10.1186/1471-2164-14-551]]+Constantin EC, Haegeman A, Van Vaerenbergh J, Baeyen S, Van Malderghem C, Maes M, Cottyn B (2017). Pathogenicity and virulence gene content of //Xanthomonas // strains infecting Araceae, formerly known as //Xanthomonas axonopodis // pv. //dieffenbachiae//. Plant Pathol, 66: 1539-1554. DOI: [[https://doi.org/10.1111/ppa.12694|10.1111/ppa.12694]] 
 + 
 +Jalan N, Kumar D, Andrade MO, Yu F, Jones JB, Graham JH, White FF, Setubal JC, Wang N (2013). Comparative genomic and transcriptome analyses of pathotypes of //Xanthomonas citri// subsp. //citri// provide insights into mechanisms of bacterial virulence and host range. BMC Genomics 14,551. DOI: [[https://doi.org/10.1186/1471-2164-14-551|10.1186/1471-2164-14-551]]
  
 Nakano M, Mukaihara T (2018). //Ralstonia solanacearum// type III effector RipAL targets chloroplasts and induces jasmonic acid production to suppress salicylic acid-mediated responses in plants. Plant Cell Physiol. 59: 2576-2589. DOI: [[https://doi.org/10.1093/pcp/pcy177|10.1093/pcp/pcy177]] Nakano M, Mukaihara T (2018). //Ralstonia solanacearum// type III effector RipAL targets chloroplasts and induces jasmonic acid production to suppress salicylic acid-mediated responses in plants. Plant Cell Physiol. 59: 2576-2589. DOI: [[https://doi.org/10.1093/pcp/pcy177|10.1093/pcp/pcy177]]
Line 53: Line 44:
 Peeters N, Carrere S, Anisimova M, Plener L, Cazale AC, Genin S (2013). Repertoire, unified nomenclature and evolution of the type III effector gene set in the //Ralstonia solanacearum// species complex. BMC Genomics 14: 859. DOI: [[https://doi.org/10.1186/1471-2164-14-859|10.1186/1471-2164-14-859]] Peeters N, Carrere S, Anisimova M, Plener L, Cazale AC, Genin S (2013). Repertoire, unified nomenclature and evolution of the type III effector gene set in the //Ralstonia solanacearum// species complex. BMC Genomics 14: 859. DOI: [[https://doi.org/10.1186/1471-2164-14-859|10.1186/1471-2164-14-859]]
  
-Peng, Z., Hu, Y., Xie, J., Potnis N, Akhunova A, Jones J, Liu Z, White FJ, Liu S (2016). Long read and single molecule DNA sequencing simplifies genome assembly and TAL effector gene analysis of //Xanthomonas translucens//. BMC Genomics 17,** **21. DOI: [[https://doi.org/10.1186/s12864-015-2348-9|10.1186/s12864-015-2348-9]]+Peng, Z., Hu, Y., Xie, J., Potnis N, Akhunova A, Jones J, Liu Z, White FJ, Liu S (2016). Long read and single molecule DNA sequencing simplifies genome assembly and TAL effector gene analysis of //Xanthomonas translucens//. BMC Genomics 17,21. DOI: [[https://doi.org/10.1186/s12864-015-2348-9|10.1186/s12864-015-2348-9]]
  
 Popov G, Fraiture M, Brunner F, Sessa G (2018). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]] Popov G, Fraiture M, Brunner F, Sessa G (2018). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]
Line 60: Line 51:
  
 Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel //Xanthomonas euvesicatoria// type III effector proteins by a machine-learning approach. Mol. Plant Pathol. 17: 398-411. DOI: [[https://doi.org/10.1111/mpp.12288|10.1111/mpp.12288]] Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel //Xanthomonas euvesicatoria// type III effector proteins by a machine-learning approach. Mol. Plant Pathol. 17: 398-411. DOI: [[https://doi.org/10.1111/mpp.12288|10.1111/mpp.12288]]
 +
 +Zhang Y, Teper D, Xu J, Wang N (2019).   Stringent response regulators (p)ppGpp and DksA positively regulate virulence and host adaptation of Xanthomonas citri. Mol. Plant Pathol. 20:1550-1565. DOI: [[https://bsppjournals.onlinelibrary.wiley.com/doi/full/10.1111/mpp.12865|10.1111/mpp.12865. ]]