User Tools

Site Tools


bacteria:t3e:xope2

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
bacteria:t3e:xope2 [2020/06/13 09:54]
bosis
bacteria:t3e:xope2 [2020/07/08 18:51]
rkoebnik [XopE2]
Line 1: Line 1:
 ====== XopE2 ====== ====== XopE2 ======
  
-Author: Jaime Cubero\\ +Author: [[https://www.researchgate.net/profile/Jaime_Cubero|Jaime Cubero]]\\ 
-Internal reviewer: FIXME \\+Internal reviewer: [[https://www.researchgate.net/profile/Eran_Bosis|Eran Bosis]]\\
 Expert reviewer: FIXME Expert reviewer: FIXME
  
-Class: XopE2\\ +Class: XopE\\ 
-Family: XopE\\ +Family: XopE2\\ 
-Prototype: XCV2280 (//Xanthomonas euvesicatoria// pv. //euvesicatoria// aka //Xanthomonas campestris// pv. //vescicatoria//; strain 85-10)\\+Prototype: XCV2280 (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\
 RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011347479.1|WP_011347479.1]] (358 aa)\\ RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011347479.1|WP_011347479.1]] (358 aa)\\
-3D structure: Myristoylation motif at their extreme N-terminus.+Synonym: AvrXacE3 (//Xanthomonas citri// pv. //citri//); AvrXccE1 (//Xanthomonas campestris// pv. //campestris//)\\ 
 +3D structure: Myristoylation motif at the extreme N terminus (Thieme //et al.//, 2007).
  
 ===== Biological function ===== ===== Biological function =====
Line 24: Line 25:
 === Phenotypes === === Phenotypes ===
  
-XopE2 shows an avirulence activity in //Solanum pseudocapsicum// (Thieme //et al.//, 2007) and //Agrobacterium// mediated transient expression of XopE2 shows avirulence activity in the ornamental plant //S. pseudocapsicum// (Lin //et al//., 2011). XopE2 proteins were shown to be capable of suppressing the hypersensitive response (HR) of //Nicotiana// spp. induced by HopPsyA of //P. syringae //pv. //syringae// 61 and the reaction occurs within the plant cells after their delivery by TTSS (Lin //et al//., 2011). XopE2 inhibits growth of yeast cells in the presence of sodium chloride and caffeine (Salomon //et al//., 2011), and expression of XopE2 in yeast affects the yeast cell wall and the endoplasmic reticulum stress response (Bosis //et al//., 2011). XopE2 mutants grow to equivalent titers as wild type //X. euvesicatoria// in tomato leaves indicating that is not required for bacterial multiplication in planta. XopE2 together with XopE1 and XopO may function redundantly to inhibit //X//. //euvesicatoria// induced chlorosis in tomato leaves (Dubrow //et al//., 2018). XopE2 inhibits the activation of a PTI-inducible promoter by the bacterial peptide elf18 in //Arabidopsis //protoplasts and by flg22 in tomato protoplasts. This effector inhibits flg22-induced callose deposition in planta and enhanced disease symptoms caused by attenuated //Pseudomonas syringae// bacteria (Popov //et al//., 2016).+XopE2 shows an avirulence activity in //Solanum pseudocapsicum// (Thieme //et al.//, 2007) and //Agrobacterium// mediated transient expression of XopE2 shows avirulence activity in the ornamental plant //S. pseudocapsicum// (Lin //et al//., 2011). XopE2 proteins were shown to be capable of suppressing the hypersensitive response (HR) of //Nicotiana// spp. induced by HopPsyA of //P. syringae //pv. //syringae// 61 and the reaction occurs within the plant cells after their delivery by TTSS (Lin //et al//., 2011). XopE2 inhibits growth of yeast cells in the presence of sodium chloride and caffeine (Salomon //et al//., 2011), and expression of XopE2 in yeast affects the yeast cell wall and the endoplasmic reticulum stress response (Bosis //et al//., 2011). XopE2 appears to promote wall-bound invertase activity in pepprt leaves (Sonnewald //et al.//, 2011). XopE2 mutants grow to equivalent titers as wild type //X. euvesicatoria// in tomato leaves indicating that is not required for bacterial multiplication in planta. XopE2 together with XopE1 and XopO may function redundantly to inhibit //X//. //euvesicatoria// induced chlorosis in tomato leaves (Dubrow //et al//., 2018). XopE2 inhibits the activation of a PTI-inducible promoter by the bacterial peptide elf18 in //Arabidopsis //protoplasts and by flg22 in tomato protoplasts. This effector inhibits flg22-induced callose deposition in planta and enhanced disease symptoms caused by attenuated //Pseudomonas syringae// bacteria (Popov //et al//., 2016).
 === Localization === === Localization ===
  
Line 44: Line 45:
 ===== References ===== ===== References =====
  
-Assis RAB, Polloni LC, Patané JSL, Thakur S, Felestrino ÉB, Diaz-Caballero J, Digiampietri LA, Goulart LR, Almeida NF, Nascimento R, Dandekar AM, Zaini PA, Setubal JC, Guttman DS, Moreira LM (2017). Identification and analysis of seven effector protein families with different adaptive and evolutionary histories in plant-associated members of the Xanthomonadaceae. Sci. Rep. 7:16133. DOI: [[https://doi.org/10.1038/s41598-017-16325-1|10.1038/s41598-017-16325-1]].+Assis RAB, Polloni LC, Patané JSL, Thakur S, Felestrino ÉB, Diaz-Caballero J, Digiampietri LA, Goulart LR, Almeida NF, Nascimento R, Dandekar AM, Zaini PA, Setubal JC, Guttman DS, Moreira LM (2017). Identification and analysis of seven effector protein families with different adaptive and evolutionary histories in plant-associated members of the //Xanthomonadaceae//. Sci. Rep. 7: 16133. DOI: [[https://doi.org/10.1038/s41598-017-16325-1|10.1038/s41598-017-16325-1]]
  
-Bosis E, Salomon D, Sessa G. A simple yeast-based strategy to identify host cellular processes targeted by bacterial effector proteins. PLoS One. 2011;6(11). DOI: [[https://dx.doi.org/10.1371/journal.pone.0027698|10.1371/journal.pone.0027698]].+Bosis E, Salomon D, Sessa G (2011). A simple yeast-based strategy to identify host cellular processes targeted by bacterial effector proteins. PLoS One 6: e27698. DOI: [[https://dx.doi.org/10.1371/journal.pone.0027698|10.1371/journal.pone.0027698]]
  
-da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira, MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA,Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos SM, Truffi D, Tsai, SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two //Xanthomonas// pathogens with differing host specificities. Nature 417(6887):459463. DOI: [[https://doi.org/10.1038/417459a|10.1038/417459a]].+da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira, MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA,Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos SM, Truffi D, Tsai, SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two //Xanthomonas// pathogens with differing host specificities. Nature 417: 459-463. DOI: [[https://doi.org/10.1038/417459a|10.1038/417459a]]
  
-Dubrow Z, Sunitha S, Kim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YC, Ozbaki-Yagan N, Vance H, Sessa G, Mudgett MB (2018). Tomato 14-3-3 proteins are required for Xv3 disease resistance and interact with a subset of //Xanthomonas euvesicatoria// effectors. Mol Plant Microbe Interact. 31(12):1301-1311. DOI: [[https://doi.org/10.1094/MPMI-02-18-0048-R|10.1094/MPMI-02-18-0048-R]].+Dubrow Z, Sunitha S, Kim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YC, Ozbaki-Yagan N, Vance H, Sessa G, Mudgett MB (2018). Tomato 14-3-3 proteins are required for //Xv3// disease resistance and interact with a subset of //Xanthomonas euvesicatoria// effectors. MolPlant Microbe Interact. 31: 1301-1311. DOI: [[https://doi.org/10.1094/MPMI-02-18-0048-R|10.1094/MPMI-02-18-0048-R]]
  
-Lin RH, Peng CW, Lin YC, Peng HL, Huang HC (2011). The xopE2 effector protein of //Xanthomonas campestris// pv. vesicatoria is involved in virulence and in the suppression of the hypersensitive response. Bot. Stud. 52(1):55-72. [[http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=60228561&site=ehost-live|Link]]+Lin RH, Peng CW, Lin YC, Peng HL, Huang HC (2011). The XopE2 effector protein of //Xanthomonas campestris// pv. vesicatoria is involved in virulence and in the suppression of the hypersensitive response. Bot. Stud. 52: 55-72. [[https://www.researchgate.net/publication/286363598_The_XopE2_effector_protein_of_Xanthomonas_campestris_pv_vesicatoria_is_involved_in_virulence_and_in_the_suppression_of_the_hypersensitive_response|Link]]
  
-Nimchuk ZL, Fisher EJ, Desvaux D, Chang JH, Dangl JL (2007). The HopX (AvrPphE) family of //Pseudomonas syringae// type III effectors require a catalytic triad and a novel N-terminal domain forfunction. Mol. Plant-Microbe Interact. 20(4):346-357. DOI: [[https://doi.org/10.1094/MPMI-20-4-0346|10.1094/MPMI-20-4-0346]].+Nimchuk ZL, Fisher EJ, Desvaux D, Chang JH, Dangl JL (2007). The HopX (AvrPphE) family of //Pseudomonas syringae// type III effectors require a catalytic triad and a novel N-terminal domain forfunction. Mol. Plant Microbe Interact. 20: 346-357. DOI: [[https://doi.org/10.1094/MPMI-20-4-0346|10.1094/MPMI-20-4-0346]]
  
-Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29(8):651660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]].+Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]
  
-Salomon D, Dar D, Sreeramulu S, Sessa G (2011). Expression of //Xanthomonas campestris// pv. vesicatoria type III effectors in yeast affects cell growth and viability. Mol Plant Microbe In. 24 (3):305314. DOI: [[https://doi.org/0.1094/MPMI-09-10-0196|0.1094/MPMI-09-10-0196]].+Salomon D, Dar D, Sreeramulu S, Sessa G (2011). Expression of //Xanthomonas campestris// pv. vesicatoria type III effectors in yeast affects cell growth and viability. MolPlant Microbe Interact. 24: 305-314. DOI: [[https://doi.org/10.1094/MPMI-09-10-0196|0.1094/MPMI-09-10-0196]]
  
-Sonnewald S, Priller JP, Schuster J, Glickmann E, Hajirezaei MR, Siebig S, Mudgett MB, Sonnewald U. Regulation of cell wall-bound invertase in pepper leaves by Xanthomonas campestris pv. vesicatoria type three effectors. PLoS One. 2012;7(12). DOI: [[https://dx.doi.org/10.1371/journal.pone.0051763|10.1371/journal.pone.0051763]].+Sonnewald S, Priller JP, Schuster J, Glickmann E, Hajirezaei MR, Siebig S, Mudgett MB, Sonnewald U (2012). Regulation of cell wall-bound invertase in pepper leaves by //Xanthomonas campestris// pv. //vesicatoria// type three effectors. PLoS One 7: e51763. DOI: [[https://dx.doi.org/10.1371/journal.pone.0051763|10.1371/journal.pone.0051763]]
  
-Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Büttner D, Caldana C, Gaigalat L, Goesmann A, Kay S, Kirchner O, Lanz C, Linke B, McHardy AC, Meyer F, Mittenhuber G, Nies DH, Niesbach-Klösgen U, Patschkowski T, Rückert C, Rupp O, Schneiker S, Schuster SC, Vorhölter F, Weber E, Pühler A, Bonas U, Bartels D, Kaiser O (2005). Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium //Xanthomonas campestris// pv. vesicatoria revealed by the complete genome sequence. J. Bacteriol. 187 (21) :7254-7266. DOI: [[https://doi.org/10.1128/JB.187.21.7254-7266.2005|10.1128/JB.187.21.7254-7266.2005]].+Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Büttner D, Caldana C, Gaigalat L, Goesmann A, Kay S, Kirchner O, Lanz C, Linke B, McHardy AC, Meyer F, Mittenhuber G, Nies DH, Niesbach-Klösgen U, Patschkowski T, Rückert C, Rupp O, Schneiker S, Schuster SC, Vorhölter F, Weber E, Pühler A, Bonas U, Bartels D, Kaiser O (2005). Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium //Xanthomonas campestris// pv. vesicatoria revealed by the complete genome sequence. J. Bacteriol. 187: 7254-7266. DOI: [[https://doi.org/10.1128/JB.187.21.7254-7266.2005|10.1128/JB.187.21.7254-7266.2005]]
  
-Thieme F, Szczesny R, Urban A, Kirchner O, Hause G, Bonas U (2007). New type III effectors from //Xanthomonas campestris// pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif. Mol Plant Microbe In. 20(10):1250–61. DOI: [[https://doi.org/10.1094/MPMI-20-10-1250|10.1094/MPMI-20-10-1250]].+Thieme F, Szczesny R, Urban A, Kirchner O, Hause G, Bonas U (2007). New type III effectors from //Xanthomonas campestris// pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif. Mol Plant Microbe Interact. 20: 1250-1261. DOI: [[https://doi.org/10.1094/MPMI-20-10-1250|10.1094/MPMI-20-10-1250]] 
 + 
 +===== Further reading ===== 
 + 
 +He YQ, Zhang L, Jiang BL, Zhang ZC, Xu RQ, Tang DJ, Qin J, Jiang W, Zhang X, Liao J, Cao JR, Zhang SS, Wei ML, Liang XX, Lu GT, Feng JX, Chen B, Cheng J, Tang JL (2007)Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen //Xanthomonas campestris// pv. //campestris//. Genome Biol. 8: R218. DOI: [[https://doi.org/10.1186/gb-2007-8-10-r218|10.1186/gb-2007-8-10-r218]]